PHENOMENOLOGICAL ANALYSIS OF NEUTRAL PION ELECTROPRODUCTION AND THE γNN^* FORM FACTOR

D. Imrie, † C. Mistretta, ‡ and Richard Wilson Harvard University, Cambridge, Massachusetts (Received 19 March 1968)

We have analyzed recent data on neutral pion electroproduction in the region of the $N^*(1236)$ resonance phenomenologically to determine the magnitude of the dominant magnetic dipole amplitude and its interference with the E_1^+ electric quadrupole amplitude. Evidence is found for the existence of significant scalar multipoles. The four-momentum-transfer dependence of the magnetic dipole amplitude is interpreted in terms of the γNN^* transition form factor between 0.05 and 0.4 (BeV/c)².

In the preceding Letter¹ (hereafter referred to as I) extensive new data have been presented on neutral-pion electroproduction in the region of the first pion-nucleon resonance. Pion angular distributions were measured for several pion-nucleon center-of-mass energies at four-momentum transfers of 0.05, 0.13, 0.25, and 0.4 $(\text{BeV}/c)^2$.

The present Letter describes a phenomenological analysis of these data which has provided three major results:

(1) The size of the electric quadrupole amplitude² E_1^+ is typically from 5 to 13% of the resonant magnetic dipole amplitude M_1^+ in the reasonable agreement with photoproduction analyses.³

(2) There is a significant scalar-transverse term in the cross section at four-momentum transfers of 0.13 and 0.25 (BeV/c)², which can be interpreted most simply as interference between the resonant S_1^+ and M_1^+ amplitudes.

(3) The γNN^* form factor is approximately proportional to the nucleon magnetic isovector form factor, in agreement with the measurements of Ash et al.⁴ The exponential form-factor dependence obtained by Dufner and Tsai⁵ from an analysis of noncoincidence electroproduction data differs from $G_{MV}(q^2)$ by approximately 12% below 0.4 (BeV/c)² and is also consistent with the results.

The general form of the pion angular distribution is given in I. For neutral-pion electroproduction, which is insensitive to the pion pole term, photoproduction analyses³ indicate that it is probably adequate to assume that the interaction only involves s and p pion-nucleon partial waves for center-ofmass energies less than 1350 MeV. In this case the most general form of the angular distribution is

$$\frac{1}{\Gamma_T} \left(\frac{d^3 \sigma}{dE' d\omega_e d\Omega_\pi} \right) = \frac{d\sigma}{d\Omega_\pi} = A + B \cos \theta_\pi^* + C \cos^2 \theta_\pi^* + (D + E \cos \theta_\pi^*) \sin \theta_\pi^* \cos \varphi_\pi + F \sin^2 \theta_\pi^* \cos 2\varphi_\pi^*, \quad (1)$$

where E' is the energy of the scattered electron, $\omega \theta$ is the laboratory solid angle for electron detection, Ω_{π} is the c.m. pion solid angle, θ_{π}^* is the c.m. pion polar angle, and φ_{π} is the pion azimuthal angle. The kinematic factor Γ_T is defined in I. It describes the major dependence of the cross section upon the electron scattering angle and ensures that the angular distribution $d\sigma/d\Omega\pi$ reduces to the photoproduction cross section in the limit of zero four-momentum transfer.

The six parameters A through F depend only upon the pion nucleon c.m. energy W, the square of the invariant four-momentum transfer q^2 (positive in the metric used here), and the polarization of the transverse components of the virtual photon ϵ . The parameters A and F can be expanded in terms of the contributing multipole amplitudes as follows⁶:

$$\begin{split} A &= \frac{\pi W}{KM} \bigg[|E_0^+|^2 + \frac{5}{2} |M_1^+|^2 + \frac{9}{2} |E_1^+|^2 + |M_1^-|^2 - \operatorname{Re}(M_1^-)(M_1^+) * \\ &- 3\operatorname{Re}(E_1^+)(M_1^+ - M_1^-) * + \frac{\epsilon q^2}{q_0^{*2}} \Big\{ |S_1^-|^2 + |S_1^+|^2 - 2\operatorname{Re}(S_1^-)(S_1^+) * + |S_0^+|^2 \Big\} \bigg], \\ B &= \frac{2\pi W}{KM} \bigg[\operatorname{Re} \Big\{ (E_0^+)(M_1^+) * + 3(E_1^+)(E_0^+) * - (E_0^+)(M_1^-) * + \frac{\epsilon q^2}{q_0^{*2}} \big[S_0^+(2S_1^+ + S_1^-) * \big] \Big\} \bigg], \end{split}$$

)

$$C = \frac{\pi W}{KM} \left[-\frac{3}{2} |M_{1}^{+}|^{2} + \frac{9}{2} |E_{1}^{+}|^{2} + 3 \operatorname{Re}\left\{ (M_{1}^{+})(3E_{1}^{+} - M_{1}^{-}) * -3(M_{1}^{-})(E_{1}^{+}) * \right\} + \frac{3 \epsilon q^{2}}{q_{0}^{*2}} \left\{ |S_{1}^{+}|^{2} + 2 \operatorname{Re}(S_{1}^{+})(S_{1}^{-}) * \right\} \right],$$

$$D = \frac{-2\pi W}{KM} \left(\frac{q^{2}}{q_{0}^{*2}} \right)^{1/2} \operatorname{Re}\left[(E_{0}^{+})(S_{1}^{-} - S_{1}^{+}) * + (3E_{1}^{+} + M_{1}^{-} - M_{1}^{+})(S_{0}^{+}) * \right] \left\{ \frac{1}{2} \epsilon (\epsilon + 1) \right\}^{1/2},$$

$$E = \frac{-6\pi W}{KM} \left(\frac{q^{2}}{q_{0}^{*2}} \right)^{1/2} \operatorname{Re}\left[(E_{1}^{+})(2S_{1}^{-} + S_{1}^{+}) * + (M_{1}^{-} - M_{1}^{+})(S_{1}^{+}) * \right] \left\{ \frac{1}{2} \epsilon (\epsilon + 1) \right\}^{1/2},$$

$$F = \frac{\pi W}{KM} \epsilon \left[\frac{9}{2} |E_{1}^{+}|^{2} - \frac{3}{2} |M_{1}^{+}|^{2} - 3 \operatorname{Re}\left\{ (E_{1}^{+})(M_{1}^{+}) * + (M_{1}^{-})(M_{1}^{+} - E_{1}^{+}) * \right\} \right],$$
(2)

where q_0^* is the c.m. photon energy, $\overline{\pi}$ is the c.m. pion momentum, M is the proton mass, and $K = (W^2 - M^2)/2M$.

Since the interaction is known to be dominated by the magnetic dipole amplitude M_1^+ , examination of the expressions for the angular coefficients shows that A, C, and F will be the dominant terms in the cross section. Furthermore, if the other multipole amplitudes are sufficiently small, the three coefficients will be related by $-3A/5 = C = F/\epsilon$.

For each data set at fixed W, q^2 , and ϵ , the results have been fitted with an expression of the above form with A through F as free parameters. For five of the 14 data sets it was possible to obtain three-parameter fits in A, C, and F which represented the data well and which could not be improved significantly by adding extra free parameters. However, in no case was the relation $-3A/5 = C = F/\epsilon$ obeyed within the errors, indicating the presence of appreciable interference terms in the cross section.

For the remaining data sets the fits were greatly improved by the inclusion of a $\cos\varphi_{\pi}$ term corresponding to the parameters *D* and *E*. However, because of the limited statistical precision of the data and the restricted range of pion polar angles, *D* and *E* had almost identical effects on the fit. Therefore, in order to decide whether the s-wave S_0^+ or the scalar quadrupole S_1^+ amplitude was responsible for the $\cos\varphi_{\pi}$ behavior, it was necessary to investigate the energy dependence of the interference term. Since the S_0^+ phase is expected to be small, its interference with the M_1^+ should change sign near resonance. On the other hand, the S_1^+, M_1^+ interference might be expected to peak at the resonance.

Figure 1 shows the behavior of the fitted parameters at $q^2 \simeq 0.25$ (BeV/c)² as a function of W. The fact that the coefficient of the $\cos\varphi_{\pi}$ term (labeled -E in the figure) remains positive across the resonance indicates that although the situation may be more complicated, the S_1^+, M_1^+ interference term is probably the dominant contribution. If this hypothesis is correct, the magnitude of the S_1^+ amplitude is approximately as large as that predicted by its threshold relation with the E_1^+ amplitude.

Although the unambiguous identification of the leading scalar multipoles is difficult, the values of A, C, and F did not depend on the inclusion of D or E, so that a fairly precise determination of the M_1^+ multipole and its interference with the electric quadrupole amplitude was possible.

1075

The scalar contribution to the coefficient C can be no larger than 5%, but the S_0^+ and S_1^- multipoles could conceivably make large contributions to A even though their interference with the M_1^+ is suppressed by phase considerations. Because of this possibility we have used C and F to extract the transverse multipole information.

The assumption that $\operatorname{Re}(E_1^+)(M_1^+)^* \gg \operatorname{Re}(E_1^+) \times (M_1^-)^*$ leads to the relation $\operatorname{Re}(E_1^+)(M_1^+)^* = \frac{1}{12}(C-F/\epsilon)$. The additional assumption that $|M_1^+|^2 \gg 3|E_1^+|^2$ leads to the expression

$$|M_{1}^{+}|^{2} = -\frac{1}{6} \left(C + \frac{3F}{\epsilon} \right) / \left(1 + \frac{2\operatorname{Re}(M_{1}^{-})(M_{1}^{+})^{*}}{|M_{1}^{+}|^{2}} \right).$$

Although the M_1^-, M_1^+ interference term is expected to be negligible compared with $|M_1^+|^2$ in the vicinity of the resonance, the photoproduction analysis of Berends, Donnachie, and Weavers³ indicates that it increases rapidly as W varies away from resonance. We have therefore used the results of Berends, Donnachie, and Weaver to obtain an approximate value for the ratio $\operatorname{Re}(M_1^-)(M_1^+)^*/|M_1^+|^2$ and increased the

errors of $|M_1^+|^2$ appropriately.⁷ The resulting correction to $|M_1^+|^2$ was 0% at resonance and, typically, 15% elsewhere.

The best phenomenological fits to the data and the values obtained for $|M_1^+|^2$ and $\operatorname{Re}(E_1^+)(M_1^+)*/|M_1^+|^2$ are shown in Table I. The errors in all cases are estimated standard deviations. The errors of A, C, E, and F include only contributions from the relative errors of the data. The errors of $|M_1^+|^2$ and $\operatorname{Re}(E_1^+)(M_1^+)*/|M_1^+|^2$ contain contributions from all known sources of error.

The dependence of the M_1^+ amplitude upon the four-momentum transfer can be interpreted as the form factor of the γNN^* transition if the assumption is made that the N^* behaves like a real particle.⁴ Several different definitions of this form factor appear in the literature. The definition adopted here is that of Ash et al.⁴ in order to facilitate the comparison of their coincidence measurements of neutral-pion electroproduction with the data presented in I. In this notation, the form factor $G_M^*(q^2)$ contains the complete four-momentum-transfer dependence of the

Table I. Results of the phenomenological analysis of π^0 electroproduction.

q ^{2.}	q ²	W	E	A	с	Е	F	NO. 0	$ \chi^2$		$Re(E_1^+)(M_1^+)$
F ⁻²	(Bev ²)	(Bev)		(µb/st)	(µb/st)	(µb/st)	(µb/st)	datum	1	(µb/st)	M1+1 2
								points			
1.19	0.0462	1.223	0.974	49.3±2.6	-40.0±3.6		-20.4±2.	8 32	22.3	17.4±2.4	09±.03
1.21	0.0471	1.197	0.978	34.4±2.3	-22.1±3.1		- 8.4±2.	7 41	58.1	9.1±2.0	12±.05
3.27	0.127	1.270	0.982	25.2±2.3	-17.9±2.7	-9.7±2.1	-18.3±2.	7 58	53.2	10.7±1.8	+.01±.04
3.34	0.130	1.226	0.984	29.3±2.1	-13.1±2.6	-7.8±2.1	-21.8±2.	5 55	54.0	13.3±1.6	+.06±.03
3.40	0.132	1.182	0.987	10.6±0.6	- 0.1±1.1		- 7.0±0.	7 49	77.7	4.6±1.3	+.13±.05
6.16	0.240	1.321	0.984	12.7±0.8	- 7.5±1.1	-3.0±1.2	- 5.5±1.	0 63	63.7	3.2±1.0	05±.05
6.24	0.243	1.284	0.985	19.0±0.8	-13.8±1.2	-2.8±1.1	- 7.5±1.	0 61	80.0	5.1±1.2	10±.04
6.29	0.245	1.259	0.986	27.4±0.9	-18.1±1.4	-9.2±1.2	-10.7±1.	1 66	52.2	7.4±1.4	08±.03
6.35	0.247	1.228	0.987	30.0±1.0	-19.1±1.7	-3.4±1.7	-13.8±1.	3 59	48.0	10.1±1.2	04±.02
6.41	0.250	1.200	0.988	28.4±0.9	-15.0±1.5	-6.5±1.8	- 9.1±1.	0 60	47.7	8.0± 1.4	06±.02
6.47	0.252	1.166	0.989	16.6±1.5	- 7.3±2.8		- 5.3±1.	5 35	25.1	5.9±2.1	03±.05
6.55	0.255	1.132	0.990	7.1±1.1	- 3.7±2.4		1.3±1.0	26	23.8		
10.22	0.398	1.279	0.978	24.8±1.5	-17.8±2.0	-3.1±1.3	-11.2±1.	8 31	24.3	7.4±1.6	07±.04
10.37	0.404	1.234	0.980	39.3±3.2	-26,9±4.3	2.6±2.1	-11.0±3.	1 26	44.7	9.8±2.0	13±.05

magnetic dipole amplitude, except for a factor of \bar{q}^* (the c.m. photon momentum), which expresses the threshold dependence of the amplitude. From Eqs. (1) and (2), and Eq. (4) of Ash et al.⁴ the γNN^* form factor is defined to be

$$G_{M}^{*}(q^{2}) = 2M \left[\frac{3}{2\alpha} \frac{\pi \Gamma}{\sin^{2}\delta} \frac{|M_{1}^{+}|^{2}}{|q^{*}|^{2}} \right]^{1/2},$$

where Γ (= 120 MeV) is the width of the resonance and δ is the $P_{3/2,3/2}$ phase shift.⁸ This definition of the form factor is related to the matrix element μ^* of Dalitz and Sutherland⁹ by the equation

$$G_M^*(0) = (M/W)^{1/2} \mu^*$$

From an analysis of photoproduction data, Dalitz and Sutherland obtained $\mu^{*} = (1.28 \pm 0.02)2$ $\times (\frac{2}{3})^{1/2}\mu_p$, where $\mu_p = 2.79$. Using this result, $G_M^{*}(0) = 2.93 \pm 0.05$. Ash et al. obtained $G_M^{*}(0)$ = 3.00 ± 0.01 by fitting the photoproduction data of Fischer et al.¹⁰ These results are to be compared with the prediction of current algebra and SU(6) symmetry, $G_M^{*}(0) = 2.3$,¹¹ and the result of a recent current-algebra calculation by Barnes and Willimas,¹² $G_M^{*}(0) = 3.5$. The latter value is expected to be an overestimate of $G_M^{*}(0)$.

The form factor C_3 defined by Dufner and Tsai is related to G_M^* by the equation

$$\begin{split} G_M^{*}(q^2) = & \left(\frac{2}{3}\right)^{1/2} \frac{M(M+W)}{W} \\ & \times \left[1 + \frac{q^2}{(M+W)^2}\right]^{1/2} C_3(q^2). \end{split}$$

The additional four-momentum-transfer dependence implied by the factor in parentheses differs from unity by less than 4.5% at four-mo-mentum transfers below $0.4 \ (\text{BeV}/c)^2$.

The values for $G_M^*(q^2)$ have been determined by averaging over the resonance. Since the M_1^- , M_1^+ interference term changes sign at resonance, its effect on G_M^* was negligible at $q^2 = 0.13$ and $0.25 \ (\text{BeV}/c)^2$. The correction due to this term raised the value of G_M^* by 4% at $q^2 = 0.05 \ (\text{BeV}/c)^2$ and lowered it by 3% at $0.4 \ (\text{BeV}/c)^2$.

The values obtained for G_M^* are compared with the measurements of Ash et al. in Fig. 2. The agreement is generally good except for the lowest four-momentum-transfer point which seems rather high compared with the more precise photoproduction data. Also shown in the figure are the form-factor dependence obtained from an analysis of noncoincidence electroproduction data by Dufner and Tsai,⁵ the prediction

FIG. 2. The γNN^* transition form factor.

of the static theory of Fubini, Nambu, and Wataghin,¹³ and the phenomenological form factor implied by the fully relativistic dispersion theory of Zagury.⁶ The static-theory prediction that $G_M^*(q^2)$ is proportional to the nucleon magnetic isovector form factor is approximately correct in this region of four-momentum transfer, as concluded by Ash et al., but the data are also consistent with the exponential form-factor dependence suggested by Dufner and Tsai.

We would like to thank N. Dombey for many useful comments.

*Work supported by the U. S. Atomic Energy Commission.

[†]Permanent address: University College London, London, England.

‡Presently at the University of Wisconsin, Madison, Wis.

¹C. Mistretta <u>et al.</u>, preceding Letter [Phys. Rev. Letters 20, 1074 (1968)].

²The notation used for the multipole amplitudes is that of N. Zagury, Phys. Rev. <u>145</u>, 1112 (1966), and <u>150</u>, 1406 (1966). The curve of Fig. 2 is taken from W. W. Ash, K. Berkelman, C. A. Lichtenstein, A. Ramanauskas, and R. H. Siemann, Phys. Letters

24B, 165 (1967).

³See, for example, F. A. Berends, A. Donnachie, and D. L. Weaver, Nucl. Phys. B4, 1 (1967).

⁴Ash et al., Ref. 2.

⁵A. J. Dufner and Y. S. Tsai, Stanford Linear Accelerator Center Report No. SLAC-PUB-364, 1967 (un-published).

⁶Zagury, Ref. 2.

⁷The ratio $\operatorname{Re}(M_1^{-})(M_1^{+})*/|M_1^{+}|^2$ at $q^2=0$ can be obtained from Ref. 3. At the highest and lowest four-momentum transfers the use of this value led to a varia-

tion of M_1^+ across the resonance which was consistant with the behavior expected from the $P_{3/2,3/2}$ phase shift. However, at the two interintermediate points a more consistent behavior of M_1^+ was obtained when no correction was made for this term. We have therefore used one-half the correction at all four-momentum transfers and increased the errors appropriately.

⁸L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. <u>190</u>, B138 (1965).

⁹R. H. Dalitz and D. G. Sutherland, Phys. Rev. <u>146</u>, 1180 (1966).

¹⁰G. Fischer, H. Fischer, H. J. Kampgen, G. Knop, P. Schultz, and H. Wessels, in <u>Proceedings of the</u> <u>Thirteenth International Conference on High Energy</u> <u>Physics, Berkeley, 1966</u> (University of California Press, Berkeley, Calif., 1967).

¹¹Quoted by K. J. Barnes and R. M. Williams, Nucl. Phys. <u>B3</u>, 424 (1967).

¹²Barnes and Williams, Ref. 11.

¹³S. Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. <u>111</u>, 329 (1958). The curve of Fig. 2 is 7% lower than the approximate calculation of Ash et al. (Ref. 2).

DOLEN-HORN-SCHMID DUALITY AND THE DECK EFFECT*

G. F. Chew

Lawrence Radiation Laboratory and Department of Physics, University of California, Berkeley, California

and

A. Pignotti Lawrence Radiation Laboratory, University of California, Berkeley, California (Received 15 March 1968)

An extension to multiperipheralism is made of the Dolen-Horn-Schmid duality argument relating Regge poles to low-energy resonances. The Deck model is thereby interpreted as predicting the existence of the A_1 , rather than as undermining experimental evidence for this resonance. It is shown in general that Dolen-Horn-Schmid duality permits a vast simplification in the calculation of multiple-production processes.

A remark of profound import for strong-interaction theory has been made by Dolen, Horn, and Schmid¹ in connection with finite-energy sum rules. They have observed that high-energy Regge behavior is consistent with low-energy resonance behavior only if extrapolation of the smooth Regge representation down to low energy gives a certain semilocal average over the resonance peaks. In other words what is usually called the "peripheral" approximation to a reaction amplitude must, without containing energy poles, in a rough sense represent the resonances. (The converse presumably is also true.) We refer to this startling notion as "Dolen-Horn-Schmid duality." Its implication for bootstrap theory is being pursued vigorously by many authors²; our object here is to suggest relevance to what has been called the "Deck effect."³ We argue that the Deck peripheral model for a reaction such as $\pi N \rightarrow \rho \pi N$, explaining a peak in the final $\pi \rho$ mass spectrum without explicit insertion therein of a resonance, fails to imply the absence of a resonance. On the contrary, Dolen-Horn-Schmid duality means that when peripheral models of this kind predict large cross sections at low subenergies (the term "subenergy" is used to mean energy of a subsystem), there

probably <u>are</u> resonances present. Such reasoning leads to enormous simplification of multiperipheral calculations.

The step needed to relate Dolen-Horn-Schmid to Deck is the extension of single peripheralism to double peripheralism. Deck's model for the above reaction, for example, is depicted in Fig. 1, corresponding to a double Regge-pole representation,⁴ a representation supposed to have validity when both the πN and $\pi \rho$ final subenergies are large.⁵ The highest trajectory for the righthand momentum transfer is the Pomeranchuk; the highest for the left-hand momentum transfer is not the π , but the small mass of the physical pion enhances the Regge residue so that this tra-

FIG. 1. Diagram representing the Deck doubly peripheral model for the reaction $\pi N \rightarrow \pi \rho N$.