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For pp- ~~+~2 m'3+x4 we fit the expression 8 0/
&2 34 ( o1(p$2 p84)+'2(&t2+fs4)+o3&i2&34

+ 4(p 12~34+P34f12)) ~ PS represents the phase space. p&2,

p~4, fi2, f~4 are Breit-Wigner cross sections for particles
1, 2 or 3, 4 forming p or f resonance; o&-o4 are the pa-0 0

rameters fitted. Reflections have been neglected. For
single resonance production we find 0(p 7rm) = (0.90
+0.38) mb and o(fomw)= (-0.05+0.20) mb. The analysis

of Ref. 8 shows that the p7t7r final state occurs mainly
through A production. For double resonance produc-
tion we find o(p'p )=(0.18+0.11) mb and o(p'fo) =(0.84
+0.17) mb constant over our momentum range. Similar-
ly, for pp ~&+m2 ~3+F4 m5 we fit the expression 82o/

&m~2m345 PS (1+a~p~2+ a2A345+ ap~2A345), where we ex-
clude the cu mass region and use a Monte Carlo gener-
ated phase space accounting for that. A34$ is a Breit-
Wigner cross section for particles 3-5 forming A2.
For single resonance production we find 0.(p 7t7r7t) = 0.93
+0.15 mb, 0(A2 ~em) =0.52 +0.15 mb, 0(p+7t~7i) =0.86
+0.14 mb, and a.(A2+x7t7|) = 0.46 +0.15 mb. For double
resonance production we find o(poA2 ) = 0.14 +0.11 mb
and 0(p+A2+) = -0.07 +0.10 mb.
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The interaction of two weakly coupled resonant systems is considered. It is shown
that if one system is treated quantum mechanically and the other classically, the re-
sults that depend on the zero-point oscillations of the quantum-mechanical system can-
not be expected to be physically meaningful.

The method of analyzing the interaction be-
tween two systems in which one system is treat-
ed classically and the other quantum mechanical-
ly —to which we refer as the semiclassical meth-
od —is as old as quantum mechanics. A well-
known example of such a treatment is semiclas-
sical radiation theory, in which the field quan-
ed classically and matter quantum mechanically.
The reverse practice of treating the field quan-
tum mechanically and matter classically is also
found in the literature, and there exist other ap-
plications of the semiclassical method in which
neither system is the electromagnetic radiation
field. Recently, there has been a spirited dis-
cussion about the validity of certain applications
of semiclassical radiation theory to optics, ' but
the validity of other semiclassical treatments
has received little examination. It is the pur-
pose of the present Letter to point out limita-
tions of the semiclassical method for general
systems in weak resonant interaction. It turns
out that the derived effect of the zero-point oscil-
lations of the quantum mechanical system cannot
be regarded as physically meaningful.

We consider two weakly coupled systems, each
of which exhibits one or more natural frequen-
cies and responds to a perturbation at frequency
co, the only common frequency, when it is in the
ground state. Let the two systems be labeled

"g" and "Q," the respective Hamiltonians H~ and

H&, and the respective dynamical variables
which exhibit the oscillations Q~ and Qt, . (We as-
sume, for simplicity, that the resonant interac-
tion takes place through single degrees of free-
dom. ) The Hamiltonian for the combined system
may be written as

H=H +H +-, )h(Q, Q ),

where Q~ and Qf, are taken to be dimensionless
and where the symmetrized product (Q~, Qb)
=Q&Qf, +Qt, Q+ is used purely for later conve-
nience, since Q~(t) and Qt (t) commute. The cou-
pling constant y is to be considered a small quan-
tity of first order, and our analysis will be that
of perturbation theory up to second order. The
coupling is assumed to begin at t = 0. The for-
malism will be such as to be interpretable both
classically and quantum mechanically for each
system independently, the dynamical variables
being those of the Heisenberg picture for quan-
tum mechanical interpretation, and [A, B] repre-
senting the Poisson bracket of A and B multi-
plied by i for classical interpretation (with the
canonically conjugate coordinates and momenta
dimensionless). Nonresonant effects will be con-
sidered negligible compared with resonant ef-
fects. This approximation is illustrated by the
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following equations:

~ (t) -=p (t)-H (o),a a a

,'y-a-f, dt (q (t ), Q (t )),

y@-f dt (Q (tl), Q~(tl)j,

=-~e (t).
b (2)

Indicating the perturbation-theory order by a superscript, we have

e "&(t)=--,'yItf dt g "'(t ), q "'(t )),a 0 1 a 1' b 1

~ "(t)= ly&f-'«H0 "'(t ), Q "'(t ))-(q "'(t ), 0 "'(t ))Ia 0 1 a 1' b 1 a 1' b 1

Using the relationship

Q "'(t) = - y$ «[Q "'(t), Q "'(t )lq "'(t ),a 1 a ' a 1 b 1'
one obtains

CB(t) — iy)&pf dt f )yt ([Q (0&(t ) q (0&(t )](Q (0&(t ) q (0)(t ))1o 2 b 1' b 2 a 1' a 1

-[Q."'(t,), Q. "'(t,)Hq, "'(t,), Q, "'(t2)B. (6)

Consider now the condition under which either (Q~'")(t))res or (Qb'"(t))res vanishes, where by
(Q'"(t))res we mean the part of the expectation value (Q'"(t)) that oscillates with frequency v. Then

(p "'(t))=(F "'(t))=0
a 5

(z e (t)) = ~y's f, dt, f, dt [c (t, t )s (t, , t )-c (t, t )s (t, t )],

where

c(tl, t2) = ([q'"(t,), Q~') (t2))), s(tl, t2) =- ((Q'"(tl), Q"'(t2))).

We are particularly interested in C and S when the system to which these quantities refer is in the
ground state. Quantum mechanically, with the matrix element notation,

Q .."'(t)=—Q ..exp(i&a ..t), k&u ..=E. E., -—ij ij ij ' ij i j'
we have, for the ground state (E =E,),

C(t, t )=2ig JQ )'sinter (t -t ), S(t, t )=-2P u JQ f'since (t -t ),

(9)

(lo)

a tilde indicating that the system is in the ground state. The resonant contribution of the products
CbSa and CaSb will come only from the A =r terms for which cop~ = -~', so we can write

C (t, t2)=-2i]Ql'sin~(t -t ), S (t, t )=-2&ulq~l'sin|d(t -t ). (»)res 1' 2 Gy 1 2' res 1' 2
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It is immediately evident that the resonant contributions of the above products in the integrand of Eq.
(8) cancel, and (b.H~) = (bHb) = 0 when both systems (treated quantum mechanically) are in the ground
state, as we would expect, of course.

Those systems which have the same formal Hamiltonian classically and quantum mechanically will
also have the same formal expression for [Q'"(t,), Q'0'(t, )] classically and quantum mechanically, in
terms of the dynamical variables of the system. It is clear, therefore, that for a classical system in
the ground state, that is, in a condition of minimum energy, C(t„ t, ) c 0 identically. This result like-
wise follows from the fact that if Cg(tl, t2) vanished, the "b" system could not respond (up to second
order) to an external, prescribed perturbation of frequency + when in the ground state. Such a re-
sponse to a prescribed force q(t) with coupling Hamiltonian alger, q is expressed, in fact, by

(b,H (t))= 'ia-—hf dt f 'dt C (t, t )(q(t ), q(t )), (12)

which also shows that the sign of iCy(tl, t2) must be such as to yield a positive value for the right-hand
side of Eq. (12). As far as S(t„t,) is concerned, however, the situation is different. A classical sys-
tem at minimum energy has no internal motion, and we have, classically, S(t„t,) =0. It is seen that
for two classical systems in the ground state we obtain the expected result (bH~) = (LHi, ) = 0, as in the
case of the quantum-mechanical systems. In this case, the result is due to the vanishing of S for
both systems.

The (universal) nonvanishing of S for a quantum-mechanical system gives rise to zero-point oscilla-
tion —a strictly quantum-mechanical phenomenon intimately connected with the uncertainty principle
—and S may be regarded as a. measure of this oscillation. It is seen from Eq. (8) that when two quan-
tum-mechanical systems are coupled, the effects of the zero-point oscillation of both systems on the
energy of either system cancel.

Consider now the situation in which the "a'* system is treated quantum mechanically and the "5"sys-
tem classically. Here we have Ca, Cg, and Sa different from zero and Sy equal to zero, so that

(b,H (t))= —(~ (f))= ziy h—f dt 5 df C (i, t )S (t, t ).

We see that when a classical system is coupled
to a quantum-mechanical system, with both in
the ground state, the formalism indicates that
the classical system gains energy and the quan-
tum-mechanical system loses energyI We also
note, by comparing Eq. (13) with Eq. (12), that
to the classical system the zero-point oscilla-
tion of the quantum-mechanical system appears
as a classical, force-producing oscillation
which can do work!

Now, obviously, a system in the ground state
cannot —by definition —lose energy. The above
result indicates, therefore, that the formulation
of a problem in which there is a mutual interac-
tion between a classical and a quantum-rnechani-
cal system contains a fundamental inconsistency,
apparently because we are treating two coupled
systems according to different principles. No

physical significance can be attached to the for-
mal effect of the zero-point oscillation, since it
is this effect that produces the inconsistency. In
those applications of the semiclassical method
where the effect of the quantum-mechanical sys-
tem on the classical system is ignored, this in-

consistency does not arise, since the approxima-
tion of ignoring the effect of the "a" system on
the "b" system amounts to dropping the CySa
term in the integrand of Eq. (8),' so that it can-
not contribute in Eq. (13). If the effect of the
quantum-mechanical system on the classical sys-
tem is of significance, however, results related
to zero-point oscillations cannot be considered
valid. The magnitude of error4 will depend, of
course, on the specific situation under study.
Consider, for instance, the spontaneous emis-
sion power' of a two-level "atom, " the "a" sys-
tem, into a classical radiation mode, the "g"
system. A simple calculation shows that Sa has
the same value for both the upper and lower
states, that is, the excited oscillations and the
zero-point oscillation are of equal magnitude.
The spontaneous emission power Psc is there-
fore independent of the atomic state, and can be
expressed easily in terms of the parameters of
Eq. (8). Using Eq. (8) again for a fully quantum-
mechanical treatment (indicated by the subscript
qm), one obtains Pqm = 2p11Psc, where p is the
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atomic density matrix and the indices 0, 1 indi-
cate the lower and upper levels, respectively.
Thus the relative error in Psc varies from —,

' to
~, depending on the atomic state, the greatest
error occurring when the effect on the mode is
entirely due to the atomic zero-point oscilla-
tions. ' Another example of the application of the
semiclassical method where the zero-point oscil-
lations determine the result, and thus destroy
its reliability, is the calculation of "quantum
noise" (which is the amplified zero-point oscilla-
tion of the field) in a, parametric amplifier'; in
this case the field is treated quantum mechani-
cally and the matter classically. Incidentally,
the above discussion indicates that an intuitive
picture —which is usually an essentially classi-
cal picture —of zero-point oscillations is likely
to be misleading.

~See, for instance, L. Mandel and E. Wolf, Rev.
Mod. Phys. 37, 231 (1965), where a comprehensive
list of additional references is given.

2I. R. Senitzky, Phys. Rev. 155, 1887 (1987).
3This approximation has been used in treating optical

detection. Thus, if the effect of the (detector) atoms
on the field is ignored, a classical treatment of the
field does not lead to any difficulties.

4By "error," we mean the deviation from a fully quan-
tum-mechanical treatment.

5Spontaneous emission power of system "a" into sys-
tem "b" is given by (d/dt)(Hs-(t)), from Eq. (8), with

system "5" in the ground state.
6E. T. Jaynes and F. W. Cummings, Proc. IEEE 51,

89 (1963), suggest a modified form of the semiclassi-
cal method (which they call neoclassical theory) for ap-

plication to the mutual interaction between atomic sys-
tems and a classical radiation mode. They propose
that in those equations of motion which describe the ef-
fect of the atoms on the field, the current variables be
replaced by their expectation values; while in those
equations which describe the effect of the field on the
atoms, the atoms remain fully quantum mechanical.
According to this prescription, the (neoclassical) spon-
taneous emission Pnc, which can be obtained from Eq.
(8) through the replacement of ((Q '(t1), Q

' '(t2)/) by
2&ps' '(t1))(Q 's'(t2)), is given by Pnc =Zipp]. l Psc
=(ipoii2/p11)&qm. The factor ip91i2/p11 varies from
0 to 1 as the atomic state, taken to be a superposition
of the two energy states, varies from the upper to the
lower one. Pnc becomes equal to Pqm only when both
vanish. The effect of zero-point oscillation is indeed
eliminated by this method, but so is the effect of ex-
cited oscillation when the system is in the upper ener-
gy state. In fact, this method eliminates the effect of
excited oscillation of any quantum-mechanical system
whenever that system is in an energy state, no matter
how high the energy level may be. Thus, in the case
of spontaneous emission by a quantum-mechanical har-
monic oscillator into the radiation field, the error in-
troduced by the neoclassical method can be arbitrarily
large; furthermore, this method is clearly inconsis-
tent with the Correspondence Principle, according to
which an oscillator in a high energy state corresponds
to a classical excited oscillator with unpredictable
phase. It should be noted that the above discussion
does not apply to induced emission problems involving
the effect of atoms on a classical field but unrelated to
zero-point oscillation.
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