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EXISTENCE OF A CRITICAL LINE IN FERROMAGNETIC TO PARAMAGNETIC TRANSITIONS

A. Arrott
Scientific Laboratory, Ford Motor Company, Dearborn, Michigan
(Received 13 March 1968)

We show a possible connection between a theorem due to Griffiths and a conclusion of
van der Hoeven, Teaney, and Moruzzi about the critical magnetic properties of EuS.

van der Hoeven, Teaney, and Moruzzi'! have
concluded that the critical point of the ferromag-
netic material EuS is not a point, but a line on
an H-T diagram. Such a result would follow if
the ferromagnetic state were not one of uniform
magnetization. Griffiths? has proved a theorem
which has as one of its immediate consequences
that in the absence of an externally applied mag-
netic field, the lowest energy state of a magnet-
ic system is not a state of uniform magnetiza-
tion. It is the purpose of this note to show a pos-
sible connection between Griffiths’ theorem and
the conclusion of van der Hoeven, Teaney, and
Moruzzi.

In a ferromagnetic system, there will be a
competition between dipole-dipole interactions
and exchange interactions which tends to keep
adjacent moments closely aligned while at the
same time eliminating to a great extent diver-
gences of the magnetization. When anisotropy
is present, this leads to domains and domain
walls. When anisotropy is not present, the mini-
mum energy state is not known (except for a few
special finite-geometry situations). But it can
be argued that it is not one of uniform magne-
tization (except for certain finite dimensions).

Micromagnetics has shown that ellipsoidal fer-
romagnetic specimens above a critical size,

while uniformly magnetized for applied field B,
greater than 47DM, where D is the demagnetiz-
ing factor and M is the spontaneous magnetiza-
tion, cease to be unifermly magnetized as B,
becomes less than 47DM.3 Thus, if the ellip-
soidal dimensions are scaled beyond a critical
size (which depends upon the dimension ratios),
uniform magnetization will not occur for B, =0.
This is in the absence of crystalline anisotropy.
The theorem of Griffiths includes the case of
a system of spins interacting only with exchange
interaction (isotropic and anisotropic) and di-
pole-dipole interaction. Let one choose a shape
of the specimen, find the minimum free energy
for that shape, and then compare the free ener-
gies for various shapes. In the limit as the di-
mensions go to infinity, the minimum free ener-
gies become equal. A corollary of this theorem
is that the minimum-free-energy state cannot
be one of uniform magnetization; for in that
case, the dipole-dipole terms would be shape
dependent. (This author does not wish to com-
ment on what happens if the ellipsoid has an in-
finite dimensions ratio before passing to the
limit of all dimensions going to infinity at con-
stant dimensions ratio.) We assume from this
that the minimum-energy configuration is not
one of uniform magnetization and that it should
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depend upon sample shape and sample size.
What this configuration would be even for a sim-
ple shape like a sphere is an unsolved problem
in micromagnetics. Let us call this configura-
tion the “spherical mode.”

As one lowers the temperature of a spherical
sample, one will reach a critical temperature
at which this mode spontaneously appears. This
temperature may depend upon the size of the
sphere, but, according to Griffiths’ theorem, in
the limit of an infinite sphere, it will not depend
upon the fact that it is a sphere or that the mini-
mum-energy configuration is the “spherical
mode.”

If a sufficiently small field is applied, some-
thing very close to the “spherical mode” will ap-
pear spontaneously at a slightly lower tempera-
ture. That is, despite the fact that the small ap-
plied field creates a small uniform magnetiza-
tion at all temperatures, there will still be a
temperature at which the spherical mode ap-
pears. If the applied field is sufficiently large,
the “spherical mode” may be suppressed and no
critical temperature is observed; i.e., the uni-
form-magnetization mode continues to increase
with decreasing temperature without the onset of
any other configuration.

The situation is quite similar to the behavior
of an antiferromagnetic material (wave vector ¢
#0) in a uniform magnetic field (g =0), or, for
that matter, to a ferromagnetic material (wave
vector ¢ =0, ignoring dipole-dipole effects) in a
spatially varying magnetic field (g #0). As long
as there appears a spontaneous mode with a spa-
tial variation different from that of the field,
there will be a critical temperature in that field.

As a specific example, we can calculate the
Curie temperature of a thin toroid in the molecu-
lar-field approximation. In this case, the spon-
taneous mode is the curling pattern around the
hole. If a field is applied perpendicular to the
toroid (through the hole), the curling pattern ap-
pears at a temperature which decreases as the
square of the applied field for small fields:
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As long as Hy <27M, the curling mode will
eventually appear below some temperature. The
observation of any anomaly associated with this
critical temperature should become more diffi-
cult as the field becomes larger. If the field
were applied by passing current in a coil wrapped
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around the toroid (threaded through the hole),
there would not be a critical point for any finite
current.

While we have talked of the applied field, it is
really the local field that matters. At any fixed
temperature below 7.(0) the magnetization in
the curling mode decreases with the square of
the applied field, while the component along the
field increases linearly with field until it is
equal to the spontaneous magnetization of the
curling mode in zero applied field. The dipole-
dipole interaction in the curling mode helps in
the alignment of spins; in the uniform mode it
hinders. The difference comes from the applied
field increasing the “local” field. (In a uniform-
ly magnetized sphere the “local” field is equal
to the applied field. In the curling mode it is
+‘§‘1rM.) If the spontaneous mode itself produces
a field which is not the same at all parts of a
specimen, the most likely result would be a
change of mode with temperature in the critical
range and a “smearing out” of the critical-tem-
perature anomalies. Thus, for anything except
the very long rod or the toroid, it is not likely
that the transition can be completely “sharp.”

In an applied field, any shape which departed
significantly from an ellipsoid would necessarily
have a smeared out transition.

To observe these effects, one would want a
cubic material (anisotropy goes to zero as a
high power of the magnetization) with a large di-
pole-dipole interaction and a low Curie tempera-
ture. Such a material is EuS. The Eu** ion has
a spin of  and no orbital contribution. The Cu-
rie temperature is 16°K. To see the effects of
this by bulk-magnetization measurements is
quite difficult for one is then observing the ¢=0
mode and not the minimum-energy mode.

The measurement of specific heat may allow
one to determine that a critical line exists. It
has been the approach of van der Hoeven, Tean-
ey, and Moruzzi to use as a criterion the ap-
pearance of a logarithmic singularity over sev-
eral decades of (T-T.)/T,. They have interpret-
ed their results as an indication that the critical
point continues to exist in fields up to 1000 G and
that the critical temperature decreases with the
applied field. They find Eq. (1) with a power of
1.6+ 0.4 rather than 2. For the model of the to-
roid discussed above, the anomalies should oc-
cur at the temperature that van der Hoeven,
Teaney, and Moruzzi call 7Ty rather than at the
T which comes from their curve fitting. Thus
the connections between their result and the ar-
guments given here are not quite clear, but in
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principle the effect noted here should exist.

The authors wishes to acknowledge valuable
discussions with Professor Griffiths, Dr. Tean-
ey, and Dr. Hiroshi Sato.

IR, B. Griffiths, private communication.

’B. J. C. van der Hoeven, Jr., D. T. Teaney, and
V. L. Moruzzi, Bull. Am. Phys. Soc. 13, 163 (1968),
D. T. Teaney, B. J. C. van der Hoeven, and V. L.
Moruzzi, Phys. Rev. Letters 20, 722 (1968).

33, Shtrikman and D. Treves, in Magnetism, edited
by G. T. Rado and H. Suhl (Academic Press, Inc., New
York, 1963), Vol. III, Chap. 8.

FAR-INFRARED ABSORPTION INDUCED BY ISOTOPES IN NaCl AND LiF ¥

Miles V. Klein and H. F. Macdonald
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(Received 18 March 1968)

We have made measurements of the far-infrared absorption at 7°K in NaCl. The natu-
ral C13% and C1%7 isotopes acting as simple mass defects result in absorption in the
acoustic band and yield information about phonon frequencies at critical points. The
theory of this effect is derived and applied to NaCl. Similar measurements on LiF are
also reported. We believe this to be the first observation of isotope-induced band-mode

absorption in alkali halides.

In a large, perfect, harmonic, alkali-halide
crystal infrared radiation is absorbed only by
the transverse-optic phonon of essentially zero
wave vector. This is the only mode of the crys-
tal driven by the long-wavelength external radia-
tion field. Since it is an eigenstate, there is a
delta-function response at its frequency w,.

When monovalent impurities are introduced sub-
stitutionally into the crystal, the radiation still
drives only the 2~0, TO mode, but it is no long-
er an eigenstate. In addition to the delta func-
tion at w,, absorption appears in the band-mode
region, and localized modes may sometimes ap-
pear.

The resulting in-band absorption in the acousti-
cal region may be classified into two general
types: (1) resonances due to strongly perturbing
impurities'™ and (2) continuous absorption which
reveals critical points in the phonon spectrum.
We have given a preliminary report of such con-
tinuous spectra for NaCl doped with silver and
other monovalent impurities, most of which
were strongly coupled.® We were able to fit the
data fairly well with theoretical calculations us-
ing shell-model phonons of Caldwell and Klein®
after adjusting force-constant changes. However,
the calculated peaks in the LA(X) and TA(L) criti-
cal-point region were about 6% too low; thus the
shell-model parameters used probably gave the
wrong phonon frequencies. Since the shape of ab-
sorption curves near critical points can be radi-
cally changed by strongly interacting impurities,
a better test of the phonon model is obtained if

the phonons are merely weakly perturbed. The
best weak perturbation is provided by isotopes,
since the perturbed dynamical matrix is then
known exactly with no force-constant changes to
guess or to fit.

For a pure harmonic crystal, the classical
(and quantum mechanical) expression for the di-
electric constant at angular frequency w is’

4me t*z
e(w) —nwz+m. (1)

Here n,, is the high-frequency index of refrac-
tion; ey* is the macroscopic effective charge as-
sociated with the ¢ =0, TO mode; v the volume
of a unit cell; and p the reduced mass for the
two atoms in the unit cell. An infinitesimal
amount of damping is provided by 5 =0%.

With substitutional monovalent impurities we
make the change

(w2 =w?=i8) =1~ (0 1(G(w?+i5)) 10), (2)

where G(z) =(A-zI)"! is the Green’s function ma-
trix for the entire impure crystal; A is the dy-
namic matrix; [0) is a normalized eigenvector

for the 2=~ 0, TO phonon; and {-+-) denotes a con-
figurational average over impurity sites. G is
given in terms of the Green’s-function matrix

for the perfect crystal:

Gy =(Ay=21),
and the defect matrix I', by the expression

G =Gy=G,T'G,+G,T'G,TGy~+ -,
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