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We derive a dispersion relation valid for arbitrary wavelength of the spin-indepen-
dent oscillations of a electron fluid. Analytic expressions for the long-wavelength lim-
it can be obtained quite easily. In addition, results for all wavelengths can be obtained

numerically for the situation in which the Fermi-liquid interaction is approximated by

a finite series of spherical harmonics.

In his classic paper on the oscillations of a de-
generate electron fluid in the presence of a dc
magnetic field, Silin' considers both spin waves
and spin-independent disturbances. For the
spin-independent disturbances he proceeds by us-
ing Mmnvell's equations to relate the electric
field to the charge and current densities, and
then expresses these in terms of the distribution
function f(e, y). The kinetic equation then be-
comes a homogenous integral equation for the
function f(8, y). Silin then expands f(8, y) in the
form of a series of spherical harmonics, and

notes that in the limit of infinite wavelength, the
different harmonics are independent. For n) im ) ) 1, he obtains the eigenfrequencies' ~„m
=g~&(1+A+)+Q(q'), where &u is the cyclotron
frequency and q is the wave vector. Recently,
Mermin and Cheng' have extended Silin's analy-
sis to shorter wavelength by evaluating the term
of order q' for propagation perpendicular to the
dc magnetic field. Essentially, these authors
note that the n, m spherical harmonic is connect-
ed by a term linear in q to the n + 1,m+ 1 spheri-
cal harmonics. They then use perturbation theo-
ry to evaluate the q' term.

In this note we present a method of analysis
which is valid for arbitrary wavelength. The
long-wavelength limit of our result reproduces,
in a rather simple fashion, the results of Mer-
min and Cheng. In addition, if the Fermi-liquid
interaction is approximated by a finite number
of terms in the usual spherical-harmonic expan-
sion, we need only solve a finite-size determi-
nantal equation for any value of qr~, where r~ is
the cyclotron radius. If all the coefficients A„
are small compared with unity, then a calcula-
tion linear in the A~ should be adequate for val-
ues of qrz

& 1, and the determinantal equation be-

(-i(u+iq "+(u a/aq)f(e, q)
X t-"

+(iqv +or a/aq)ae (e, y)+eE-v=o.
X C 1

Here 8, y are polar coordinates in k space and

f(8, y) is defined by

rf(k) = (-af,/a~)f(e, q ), (2)

where af(k) is half the trace with respect to spin
of the deviation from thermal equilibrium of the
density matrix caused by the electric field E.
We have assumed space-time dependence of the
form exp(-i~t iq+x), and taken the dc magnetic
field to define the z direction. The function 5e,
is given by

ae, (k) = fd~k'C (k, k')af(k'),

where C (k, k') is the spin-independent part of the
interaction function. We introduce R(8, y), the
periodic part of the position vector in real space
of an electron on the Fermi surface, and note
that

iq R(8,y), , imcp

m=00m (4)

Here X=q„vF/&ue and Jm is the mth-order Bes-
sel function. We define the Fourier coefficients

comes rather simple. In particular, if all the
A„are set equal to zero for n & 2, the secular
equation reduces to the well-known dispersion

o2relations Ozz a" Ox@ &yy + gxy 0 p
larizations parallel and perpendicular to the dc
field, respectively, ' where z is the conductivity
tensor in the absence of Fermi-liquid effects.

The spin-independent kinetic equation for a col-
lisionless electron liquid is
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fm(8), vm(8), and Cm(8, 8') of the functions fe%'R, ve% R, and 4(k, k'), respectively, in analogy
with Eq. (4). In terms of these functions, the kinetic equation can be written

((o-n(u )f (8)-n(u I' (8)-ieE v (8) =0.
c n c n n (5)

Here

I' (8) = g p A 9 (8)J (Xsin8) Jd(cos8')9 {8')J (Xsin8')f (8'),
l l

n s s n l s m-l m
ml s)!ll

9 (8) = (s+2) ', P (cos8).l, (s-!ll)! '" !l!
(7)

P ! is the standard I egendre polynomial, and the As are the Fermi-liquid interaction coefficients. '
Following Silin, we use Maxwell's equations to relate the electric field to the current density and
hence to the distribution function. We obtain

4mi em*&A, y Q fd(cos8)f (8)v *.

Here A is a diagonal matrix with an z-x element of unity and the other diagonal elements equal to &u /
(&u'-c'q'), and yn =1+A„. We introduce the function

F =Q fd(cos8)9 (8)f (8)J {Xgine).
n n s sm

The kinetic equation can be solved by substituting Eq. (8) into Eq. (5), multiplying by 9s. (8)Jn li(X
xsin8), summing on n, and integrating over cos8. When this is done one obtains an infinite set of
simultaneous equations for the function I'sil . Now, not all the I'nm are independent. e The equation
of continuity gives

I" '=6 '12(qv /(u)y (I '+I' '). (10)

We can use Eq. (10) to eliminate I', from the infinite set of equations. Then the solutions are obtained
by setting the determinant of the coefficients equal to zero. We find it most convenient to write the in-
finite determinantal equation as

where for n', n e 1,

mm'
annl

(oA

c

while for n'=1, n1,

for n =1,n'1,

a, , =g ~, (-i+ )Jd(cose)e, u e, Z (14)

and for n=n'=1,

(15)
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In these equations we have introduced

u '=J +J, u =J,s s-1 s+ 1' s s' (16)

and Ai '=~zap yi/(w -c q ), AI =up yl/(oP-c q ), and Ai+'= ~&up yi/aP. In writing down Eqs. (13)
and (15) we have omitted small terms involving Ao and A, compared with the very large terms propor-
tional to A, , A, ', or A, for w of order ~c. Because of the appearence of the large terms coming
from Maxwell's equation, Ao and A, essentially drop out of the problem. In addition, we can neglect
the -1 compared with a»", a»", and a» ' ' in Eq. (11).

It is not difficult to see that annum vanishes if n-&pe is of different parity from n'-m'. Thus the
secular equation reduces to one for odd n-m and one for even n-m. It can easily be seen that all the
off-diagonal elements of annimm vanish in the q =0 limit except a»' ' and Qyy . The solutions be-
come

u=y mco +n X
n c nm

for n & 1 and Jm I &n. The coefficient oz~ can be evaluated by noting that for the n, m mode, az„m~
-1 is proportional to X; and that only the matrix elements involving n + 1,m+ 1 are proportional to X.
For n) 2 we obtain the result

-m yc n
Q'

nm 2
m

I sin'8 i
n

mA m+ y An'
n cn ' m' . m

2 2+ , lsin81 (any -~'y ')
n n n

(is)

where the sum onn', m' includes the terms m'=m+1, n'=n+1, only. For n=2, the terms involving

A„1must be replaced by

——,'&u (, [sin& I,')' for m =1
c

and by

(d

(,'I sin8i,')' for ~ = 2.
42y, -1 '

In these equations

)sin8i = Jd (cos8)e sin89,

These results are equivalent to those obtained by Mermin and Cheng' using perturbation theory.
When the interaction function is approximated by a finite series of spherical harmonics, the secular

equation is finite because annlmm is ProPortional to A„I for n') 1. We have solved the secular equa-
tion numerically for the case A„=0 for n&2. For sufficiently large values of X (X&1), Iinearization
in the interaction coefficients A„ is a good approximation, and the secular equations become

00(1 ~ ) ~ Om 0
11 nm nn nm 1n nl

for polarization parallel to the dc field, and

mm 11 m -1 - lm -1-1 m 1 1m
+0 ~ nn

+
11 + nl 1n

+
11 ~+nl 1n

-11 m-1 im 1-1 mi -im
11 ni In 11 „ni 1n

(20)

for the other polarization. In these equations the summations are performed over all n & 1 and all m
such that im i &n', in addition, n mmust be -odd in Eq. (20) and even in Eq. (21). The function K0 is
equal to a»"a» ' '-a» '"a»'i '. On setting all the A„=O, Eqs. (20) and (21) reduce to a»00=0 and

NO=0, respectively. These are identical to the equations ozz —-0 and 0~~0&&+0~& =0 for the noninter-
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acting electron gas. The q = 0 roots at ~ =m~~ found from these equations are actually the zero-sound
modes &u =y„m&oc (for n& 1,n & )m () which all coalesce when y„=1 for all values of n .This can be
seen by substituting back into Eq. (11) and noting that I'P+ vanishes for these modes7; thus there is no
electric field or current density associated with them at q = 0. %hen all the An are finite, the solution
for n = 1 is the transverse or longitudinal plasma frequency. The "plasma waves" observed by Walsh
and Platzman are predominantly zero-sound waves with ~ = 1 for small values of X. For a given m,
the "zero-sound" wave with the smallest possible value of n is most strongly coupled to an electric
field for long wavelengths. Thus for m =1, the n =2 mode is most strongly excited for polarization
parallel to the dc field, and the n =3 mode is for the other polarization.
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ENDOR measurements of the ~I" nuclei in the first four shells in CaF2 containing
Yba ions in the cubic site are reported. The results are compared with those of iso-
electronic Tm2 ions.

Transferred hyperfine interactions in rare
earths have been measured so far only in a few
cases. '~' The interpretation of these results is,
to date, not very conclusive because the various
different contributions such as overlap, covalen-
cy, dipolar interaction, and configuration inter-
action are difficult to evaluate. Some light could
be shed on this problem if isoelectronic systems
would be studied, in which the paramagnetic ion
is contained in the same crystal host. This pos-
sibility exists for the alkaline earth fluorides
such as Ca, F2, SrF„or BaF,. It has been shown
by numerous authors that stable divalent rare-
earth ions can be produced in this crystal host, '
where the rare-earth ions take the place of the
cation and preserve the cubic symmetry. On the

other hand, trivalent rare-earth ions can be sub-
stituted for the calcium ion. A fraction of these
ions, which depends of the nature of the ion
—the manner in which the crystals were grown
and the subsequent heat treatment —can be sub-
stituted at the cubic site with charge compensa-
tion far removed.

We have studied the ENDOR fluorine spectrum
of the first four shells in the single crystal of
CaF2 containing approximately 0.1% of Yb + ions.
The results are contained in Table I. They are
to be compared with Bessent and Hayes' mea-
surements on Tm'+ in CaF2.2 Also listed in Ta-
ble I are the g factors, the cubic crystal-field
parameters as determined from the optical spec-
tra, 4~' and the deviation of the g factor from the


