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In this Letter we.report the observation of an

interband magneto-optical transition in InSb
caused by the linear-k term in the valence-band
energy E(k). An unambiguous assignment is
made by a study of the anisotropy of the spectra
[with the magnetic field H in the (110) crystal
plane] using left- and right-circularly polarized
light. From the relative strength and position
of this transition we determine the size of the
linear-k term. A similar procedure is used to
measure the warping of the InSb valence band, a
quantity over which there is currently some dis-
agreement.

The theory of the inversion asymmetry terms
in zinc-blende crystals has been known for some
time. '&~ These terms —the lowest order are k
and k' terms-result from the antisymmetric po-
tential or inversion asymmetry of the zinc-
blende lattice. Combined with the spin-orbit in-
teraction, they split the twofold energy degener-
acy at a given k value. Because the splittings
are small, they have been difficult to observe ex-
perimentally. Recently, it has been suggested
that a beat frequency in the Shubnikov-de-Haas
effect in n-type HgSe' gives the conduction-band
inversion-asymmetry splitting, ~ and the same ef-
fect is apparently seen in n-type GaSb. ' This
has not been useful for determining the size of
the linear-k term which splits the valence band. '
Evidence of the linear-k splitting has been given
recently by Robinson' from microwave cyclotron-
resonance experiments inP-type InSb. However,
difficulties in the interpretation of this type of

experiment resulting from poor resolution of the
lines (vc&-0.9) and the sensitivity to stra, in ef-
fects make it desirable to have independent de-
terrninations. %e find the linear-k term to be
about three times smaller than suggested in Ref. 7.

The physical explanation of "extra" transitions
due to the linear-k and warping interactions is
not difficult to understand and we discuss this
before going into the theoretical formalism.
The calculation of magnetic energy levels in
InSb has been carried out by Pidgeon and Brown, '
by an extension of the method used by Luttinger
and Kohn for the Ge valence band. '&" Energy
levels calculated by the method of Ref. 8 (to be
discussed more fully below) are shown in Fig. 1

for the top of the valence band and the bottom of
the conduction band. To diagonalize the magnet-
ic Hamiltonian appropriate to this problem it is
necessary to omit inversion-asymmetry terms
and some of the valence-band warping. " The
solid lines in Fig. 1 show the optical transitions
which can take place in the Faraday configura-
tion (Ei H): Electrons can be excited from the
two "a"-set valence-band ladders into the my= 2

conduction sub-band, or from the two "b"-set
ladders into the my= -2 conduction sub-band.
Usually the inversion-asymmetry and warping
terms omitted from the magnetic Hamiltonian
cause negligible error. However, if two levels
which interact through the omitted terms are
nearly degenerate in energy, considerable ad-
mixing of wave functions can take place. This in
turn can cause observable extra transitions. In
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this Letter we are concerned with extra transitions to the lowest conduction-band levels caused by the
linear-k and warping interactions represented by C and (y, -y, ), respectively, in Fig. 1.

The full 4~4 effective-mass matrix Hamiltonian to order k' for the light- and heavy-hole valence
bands of a zinc-blende semiconductor can be written as"

D=D++D

where D+ is the even part given by Luttinger, "
D+ = -m '[(y + —,'y ) —,'k~-y (k ~J' ~+k ~J ~+k ~Z ~)-2y ((k, k HJ, J' j~+ cyclic permutations)1 2 2

2
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and D is the odd part (zero for materials with
inversion symmetry)

D = -(2/~3C[k fJ, V ]+k fJ, V ]
X X X

+k (J,VH.

! The notation is defined in Refs. 10 and 12. y»
y, & and q are the effective-mass parame-

ters for a Ge-type semiconductor; C is the addi-
tional constant describing the linear-k interac-
tion. The Ji are 4~4 angular-momentum matric-
es for J= 2. k is the kinetic momentum operator
(p+eA/c), where A is the vector potential of the
external magnetic field. The quantity (a, b]-=—.'(ab+ ba), V~ =Jy*-Z, '.-

We consider first the effective-mass equation
corresponding to the even part, D+, of Eq. (1).
We put k, =0 [where H is along the "3"direction
in the (1, 2, 3) coordinate system], because it is
the k, = 0 states which are important for the on-
set of interband optical transitions. The effec-
tive mass equation is then exactly soluble only
for Hit(111). In Ref. 8, D+ is split into two
parts for H in the (1II) crystal plane:

D+ =Do+ Di.
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FIG. 1. Lowest magnetic energy levels for the va-
lence and conduction bands of Insb. The numbers by
the levels in the a and b valence ladders are the Lan-
dau quantum numbers n for the two component states.
The corresponding total angular-momentum quantum
numbers MJ are given below. Allowed and extra tran-
sitions for the OJ (~g=+1) and cr~ QAfg=-1) spectra
are shown: solid line with arrow, allowed; dashed
line with arrow, warping induced; dot-dashed line with
arrow, inversion-asymmetry induced.

The principal anisotropy is included in D, which
is treated exactly. The general 4 ~ 4 equation
for D, decouples into two 2 & 2 equations, giving
rise to two ladders (a and b) of light- and heavy-
hole levels. The lowest levels from the solution
of D, in the a and b set of the valence band, and
the first spin-up and spin-down levels of the con-
duction band, are those shown in Fig. 1, for H

Il(111). As mentioned earlier, allowed transi-
tions are shown for the Faraday configuration
(left- and right-circularly polarized light, OI and

~R) ~

The explicit form of D, is given in Ref. 10, Eq.
(8t); in particular, we are interested in the
term r, . This is proportional to the warping pa-
rameter (y, -y~) and causes an interaction be-
tween certain closely spaced levels of the a and
b ladders for H ll(111) and (211) but not for H

ll (100) or (110). This interaction between two
nearly degenerate states is shown in Fig. 1.
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The resulting admixing of wave function causes
an extra transition to each of the two lowest con-
duction-band levels, shown by the dashed lines
in Fig. 1 and labeled so on the experimental (111)
magnetoref lection trace in Fig. 2. We have also
verified that these transitions ar e seen for H

II (211) and are absent for H II (110).
With the source of these transitions recog-

nized, it is desirable to go to the eigenvalue
problem for H Il (111)where the warping can be
treated exactly. The solution to the effective-
mass equation D+(111)f= &f is

A 4

A 4
5,n n+2

for n~ 2, 3, ~ ~ ~,
A 4

6, n n-2

A 4
4, n n

(5)

where s runs over the four ladders and 4& is the
harmonic-oscillator function of quantum number
n. The subscripts on the eigenvectors A are
written to conform with the notation of Ref. 8.
They refer to the associated band-edge cell peri-
odic functions in the (J, Mg) representation:

3/s
gg

-x/3 + x/I + -s/a For n = -1 -2 A =A
3 t 5 s 6 s 4 6

=A4=0; for n=0, 1, A6=0. Using the band pa-

As c 4cus + As s usus + A4 c+4cu4~

and the second heavy-hole level in the b set,

~s-As ~ 4'~us+A» s C'su4.

(8)

Since no other interactions with these levels are
present, we may treat this 2&&2 problem exactly.
The interaction matrix element is then

q» = (2ee/3c)'"[As, -As, --8'"A
7

rameters given in Ref. 8 we have diagonalized
D+(111)numerically, making fine adjustments
on the higher band parameters [and in particular
the warping term (ys-ys)] to achieve a good fit to
both the relative positions and strengths of the
allowed and warping-induced transitions found
experimentally.

The explicit form of D from Eq. (3) has been
given for H ll(001).' For H in any direction in
the (1I'0) crystal plane we have made the coordi-
nate transformations given in Ref. 10. The de-
tails of this are given elsewhere. " It is found
that for H II (111)and (211) a strong interaction is
possible between nearly degenerate states,
shown by C in Fig. 1. This gives rise to an addi-
tional o& transition to the m~= 2, n = 0 conduction-
band level (shown as a dot-dashed line in Fig. 1
and labeled as k in Fig. 2). The interaction
states are the lowest heavy-hole level in the a
set (now a three-component state as a result of
the warping interaction),
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I

I

I

I
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I I
1 r
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It may be shown" that Q» is given by
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FIG, 2. Magnetoreflection spectra for H (I (111) and
H II (100) in the Faraday configuration, with H=84 kOe
and T =1.5'K. Transitions to the my= 2, n =0 conduc-
tion-band level occur to the left-hand side of the break
in the energy scale and those to the mJ=2, n=0 con-1

duction-band level occur to the right-hand side. ao

labels warping-induced transitions and k labels the
linear-k-induced transition.

where 26 is the energy separation between, and
x is the ratio of the strengths of, the experiment-
ally determined forbidden and allowed transi-
tions. Thus, from Eq. (9), the experimental re-
sults give C directly. Inversion-asymmetry tran-
sitions for H Ii (100) and (110)may also occur,
but these are about five times weaker than the
above, and have not been observed in the present
work.

The magnetoref lection spectra of Fig. 2 were
taken on pure InSb samples (N-10' cm s) at 1.5
K. Because of the large conduction-band spin

splitting, the transitions to the spin-down and
spin-up conduction sub-bands are widely sepa-
rated and permit unambiguous assignments of
transitions. Following Johnson'4 we identify the
sharp symmetric lines with exciton ground states.
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FIG. 3. Valence-band dispersion relations for k
along (100) and (111) directions which result from the
parameters determined here. The numbers indicate
the degeneracy of the band. In all other directions
both light- and heavy-mass bands are split. The max-
imum splitting occurs for the (ill) heavy-mass band.

We make the assumption that the binding ener-
gies for all transitions to the same n =0 conduc-
tion-band level are equal; so the differences in

energy between transitions are given in terms of
the Landau-level theory. This is reasonable
since all the valence levels involved have about
the same mass (-20 times greater than the con-
duction mass).

Relative to the associated allowed transition in
the og spectrum, the lowest warping-induced
transition in Fig. 2 has a strength of about 2,
and the linear-k transition a strength of about
1/15. Using this and the energy separations we
obtain the following values for the warping and
linear-k parameters: (ys-y, ) = 1.0; C = 3.0 && 10
a.u. or 4.2&&10 " eV cm. This gives a linear-k
upbending of the heavy-hole band of about 1.0
&10 4 eV, as shown in Fig. 3. We estimate the
maximum error in y, -ys to be +15'%%uo, and that in
C to be +30%. The result for y, -y, is in good
agreement with the cyclotron resonance work of
Bagguley, Robinson, and Stradling" and not with
the more recent work of Tohver and Ascarelli. "
The value for C is about three times smaller
than that given in Ref. 7, but is in good agree-
ment with the theoretical estimate of Kane. "

At low magnetic fields the linear-k terms will
have a large perturbing effect on the magnetic
energy levels, and the perturbation approach dis-
cussed here will break down. In this case an en-
ergy-level calculation such as that described in
Ref. 11 becomes necessary. However, the small

size of the linear-k transition observed experi-
mentally justifies our approach. We have seen
this transition in the region from 30 to 100 kOe,
where the small perturbation method is found to
be valid. Finally, it is worth summarizing the
steps leading to the assignment of the linear-k
transition and warping-induced transitions:

(1) The basic energy-band level scheme, and
identification of the allowed transitions, are
known from Ref. 8.

(2) From the relative energies of the allowed
and extra transitions in the (111)case, we iden-
tify the valence-band levels of origin.

(3) Equation (1) shows that the only interac-
tions present between the pairs of levels involved
(Fig. 1), which will also give rise to transitions
to the n = 0 conduction-band levels in the polar-
izations found experimentally, are the linear-k
and warping interactions.
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We derive a dispersion relation valid for arbitrary wavelength of the spin-indepen-
dent oscillations of a electron fluid. Analytic expressions for the long-wavelength lim-
it can be obtained quite easily. In addition, results for all wavelengths can be obtained

numerically for the situation in which the Fermi-liquid interaction is approximated by

a finite series of spherical harmonics.

In his classic paper on the oscillations of a de-
generate electron fluid in the presence of a dc
magnetic field, Silin' considers both spin waves
and spin-independent disturbances. For the
spin-independent disturbances he proceeds by us-
ing Mmnvell's equations to relate the electric
field to the charge and current densities, and
then expresses these in terms of the distribution
function f(e, y). The kinetic equation then be-
comes a homogenous integral equation for the
function f(8, y). Silin then expands f(8, y) in the
form of a series of spherical harmonics, and

notes that in the limit of infinite wavelength, the
different harmonics are independent. For n) im ) ) 1, he obtains the eigenfrequencies' ~„m
=g~&(1+A+)+Q(q'), where &u is the cyclotron
frequency and q is the wave vector. Recently,
Mermin and Cheng' have extended Silin's analy-
sis to shorter wavelength by evaluating the term
of order q' for propagation perpendicular to the
dc magnetic field. Essentially, these authors
note that the n, m spherical harmonic is connect-
ed by a term linear in q to the n + 1,m+ 1 spheri-
cal harmonics. They then use perturbation theo-
ry to evaluate the q' term.

In this note we present a method of analysis
which is valid for arbitrary wavelength. The
long-wavelength limit of our result reproduces,
in a rather simple fashion, the results of Mer-
min and Cheng. In addition, if the Fermi-liquid
interaction is approximated by a finite number
of terms in the usual spherical-harmonic expan-
sion, we need only solve a finite-size determi-
nantal equation for any value of qr~, where r~ is
the cyclotron radius. If all the coefficients A„
are small compared with unity, then a calcula-
tion linear in the A~ should be adequate for val-
ues of qrz

& 1, and the determinantal equation be-

(-i(u+iq "+(u a/aq)f(e, q)
X t-"

+(iqv +or a/aq)ae (e, y)+eE-v=o.
X C 1

Here 8, y are polar coordinates in k space and

f(8, y) is defined by

rf(k) = (-af,/a~)f(e, q ), (2)

where af(k) is half the trace with respect to spin
of the deviation from thermal equilibrium of the
density matrix caused by the electric field E.
We have assumed space-time dependence of the
form exp(-i~t iq+x), and taken the dc magnetic
field to define the z direction. The function 5e,
is given by

ae, (k) = fd~k'C (k, k')af(k'),

where C (k, k') is the spin-independent part of the
interaction function. We introduce R(8, y), the
periodic part of the position vector in real space
of an electron on the Fermi surface, and note
that

iq R(8,y), , imcp

m=00m (4)

Here X=q„vF/&ue and Jm is the mth-order Bes-
sel function. We define the Fourier coefficients

comes rather simple. In particular, if all the
A„are set equal to zero for n & 2, the secular
equation reduces to the well-known dispersion

o2relations Ozz a" Ox@ &yy + gxy 0 p
larizations parallel and perpendicular to the dc
field, respectively, ' where z is the conductivity
tensor in the absence of Fermi-liquid effects.

The spin-independent kinetic equation for a col-
lisionless electron liquid is
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