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The problem of the precession of the "spin" of
a particle moving in a homogeneous electromag-
netic field —a problem which has recently ac-
quired considerable experimental interest- has
already been investigated for spin —,

' particles in
some particular cases. ' In the literature the re-
sults were derived by explicit use of the Dirac
equation, with the occasional inclusion of a Pauli
term to account for an anomalous magnetic mo-
ment. On the other hand, following a remark of
Bloch' in connection with the nonrelativistic case,
the expectation value of the vector operator re-
presenting the "spin" will necessarily follow the
same time dependence as one would obtain from
a classical equation of motion. To solve the pro-
blem for arbitrary spin in the relativistic case,
it will thus suffice to produce a consistent set of
covariant classical equations of motion. Such
equations have been indicated a long time ago by
Frenkel' and are discussed by Kramers. ~ These
authors use an antisymmetric tensor M as the
relativistic generalization of the intrinsic angular
momentum observed in the rest-frame of the
particle. A formulation in terms of the (axial)
four-vector s which describes the polarization in
a covariant fashion' —though basically equivalent-
is however much more convenient for our pro-
blem. We shall therefore derive first the equa-
tions of motion directly in terms of this four-
vector s.

Let the spin of the particle be represented6 in
the rest-frame (R) by s. We assume (a) that
there exists a four-vector s such that in (R) it
coincides with s:

s =(s', s); in (R), s =(0, s).

customary equation of motion

ds/d~ = (ge/2m) (s x H), (R) (3)

where 8, e, and m have their standard meanings,
while the gyromagnetic ratio g is defined by this
very equation. While s vanishes by hypothesis
in any instantaneous rest-frame, dso/dr need
not. In fact, (2) implies

ds'/dr= s (dv/d7), (R) (4)

ds/d~= (ge/2m)[E. s+ (s.E u)u] - [(du/dr). s]u, (6)

as can be checked by reducing to the rest-frame.
With (5), one has for homogeneous fields

ds/dr= (e/m)[(g/2)E. s+ (g/2 - 1)(s E.u)u]. (7)

(5) and (7) constitute, for any value of g and ar-
bitrary spin s, a consistent set of equations of
motion; they imply that s.s and s I are constant,
so that condition (2) is maintained. ' For experi-
ments of current interest, the main use of (7) is
in the computation of the rate Q at which longi-
tudinal polarization is transformed into a trans-
verse one (and vice versa). For this, we ex-
press s in the laboratory frame (L) in terms of
two unit polarization four-vectors, e~ and eg.

s/5 =e& cosp+et sing,

for such frames. In general, du/d7 =f/m (where

f =four-force), while in a homogenous external
electromagnetic field specified by E = - (E, H)

du/dr= (ejm)E u.

The immediate generalization of Etls. (8) and (4)
to arbitrary frames is

Denoting the four-velocity of the particle by u
= (uo, u) =r(l, v) [where v is the ordinary velocity,
and r (v) = (1 - v') v'], one has in every frame

where

&=(-s s) ',

s.N=O, i.e. , s'=s v.

We further assume (b) that s obeys in (R) the

(2) e) =r(v, v/v) = r(v, v), ef =(O, n)-,

A A A

n n=i, n e=O. {L) (S)
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Clearly, Q =dg/dt=dP/yd7. .Introducing (8) into

(7), and expressing all quantities as ordinary
vectors, we find

Q = (e/m)((E. n/v) [(g/2 —1) - g/2y']

+ (v Hxn)(g/2 -1)).
The relevant "anomaly" of spin-2 particles,
(g/2 -1), is clearly exhibited in (9) although our
derivation was classical throughout.

We now specialize (9) to some cases of prac-
tical interest (the references are to experiments):

(A) E xv=Hxv=0; Q =0. The character of the
polarization does not change, but the transverse
polarization precesses around v in longitudinal
fields with an angular frequency & = (ge/2my)H
= (g/2)~&, as follows readily from (8).

(B) H-nxv=H, E=O; Q=u&(g/2-1)y, where

uf is the &armor frequency defined in (A) above.
(C) E n=E, H=O; Q =(d [-g/2y+ (g/2 -1)y],

where ~I, -eE/myv is the angular frequency of
the particle's motion in the laboratory.

(D)' E H=O, rectilinear motion: E = -vxH;
H.nxv=a, Q= (cL(g/2y).

(E)" E H = 0, R.n xv =H, E.n, = Evx/v, tr-ochoidal
motion: E/H «1; Q = (e/m) [(g/2 —1)(H Evx)—
+Ev j(y'-1)],

(hP/2z) per loop =y(E/H)y(v) [1 - (E/H)v~](g/2 - 1)

=y(v')(g/2 - 1),

where v' is velocity in a frame where E'=0.
The generalization of (8) to cover particles

having an intrinsic electric dipole moment e
=(g'e/2m)s may be of interest. In the (R) frame,
the effect of r is taken into account by adding
ZxE to the right-hand side of (8), while leaving
(4) unchanged. Thus the required change in the
right-hand side of (8) is the addition of a term
-(g'e/2m)[(F*. s)+ (s E*u)n], denoting by E the
dual of E, i.e. , E = -(H, -E). For the experi-
ment (8) above, one obtains then (Q I =&u&y
x [(g/2 —1)'~ (g~v/2)']v'
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