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for %' that has been derived by several authors'.

W&& (r) =v[(g I V I q'c"p (r))'j AvPgf.

yc are states of the target particles i, q, is the
ground state, u are states of the extra nucleon,
V is the nucleon-nucleus interaction Pi v(r -ri),
the integration is over target particles, [ ]Av
denotes average over product states q u of
angular momentum l near energy 8, anZp&& is
the density of such states. For N near 50 and
Z nonmagic, and an extra neutron, one expects

p@~ to have less than half the normal value.
Provided that the matrix elements do not vary
in a reciprocal fashion (and there is no reason
to expect such perverse behavior), W will be less
in proportion. Since the neutron orbit completing
N = 50 is a g-orbit, W(r) is expected to be some-
what peaked at the nuclear surface. For Z near
50, and N nonmagic, p&& should have about half
the usual value. There will also be surface peak-
ing especially if neutrons have begun to fill the
h-orbit.

To discuss the effect of such changes in S" on
the strength function, s, one may use'

s- %'r u x 'dr,

where u(r) is the nucleon wave-function in the
complex potential. Between single-particle levels
(i.e., near A-100 for s-waves), not only is s de-

creased by the reduction in R, but it is further
decreased if W is surface-peaked since u(r) has
a surface node. These two facts may thus ex-
plain the discrep'ancy in the observed values of
s near N, Z =50. Near the center of a single-
particle level, lu(r) ~'- W ' and s -W ', so s is
increased by a reduction in 8'. This leads one to
expect an especially large p-wave strength func-
tion near A -90 and may help to explain why the
capture cross section at 50 kev is so large in Nb. 4

One also expects a large s-wave strength func-
tion near A -50 caused by a reduction in 8' due to
magic number 28, and there is some weak evi-
dence for this. Furthermore the observed' dimi-
nution in the width of the yhotonuclear peak near
closed shells may be associated with a reduction
in 8'.
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With charge independence, it is convenient to
describe the s-wave scattering processes of low-
energy K -yroton collisions by two complex scat-
tering lengths A, and A» one each for the I=O
and I=1 channels, related to the complex phase
shifts 51 by

Scot()I = 1jAI(k),

where 4 denotes the center-of-mass momentum
of the K -p system. Since the K -p interaction
is expected to have short range (-I/mKc), Jack-
son et al.' have suggested that it is reasonable
to neglect' the energy dependence of these ampli-
tudes for c.m. energies below - 50 Mev. On this
basis, an analysis' of the K -p interaction data
available from bubble-chamber investigations at

low energies' has led to the following four solu-
tions' for these amplitudes A and A, :

Ao =(0.20+0.78i) f, A, =(1.62+0.39i) f, (a+)

Ao =(1.88+0.82i) f, A, =(0.40+0.41i) f, (b+)

and the sets (a-), (b-) obtained from (a+), (b+)
by reversing the signs of the real parts of both
A~ and A,. As Jackson and Vfyld' have recently
pointed out, the "repulsive" interactions, that is
amplitudes of the type (a-) and (b-), predict the
lower elastic scattering cross sections at very
low energies, owing to their destructive inter-
ference with the Coulomb scattering, and are in
accord with the trend found for the cross sections
at the lowest energies in emulsion studies. ~ It
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wil1. be pointed out here that this situation makes
it quite probable that there shouM exist a reson-
ant state for pion-hyperon scattering at an en-
ergy of about 20 Mev below the K -p (c.m. }thres-
hold energy. In the present discussion, charge-
dependent refinements due to the Coulomb inter-
action and the K -K' mass difference will be
neglected.

With Eq. (1), the K N-scattering amplitude for
the s-wave of isotopic spin I takes the form

(KNI T IKN) =(aI+bI)/{I k(aI+ bI)) (2)

where aI+ibI=AI and the total c.m. energy F.
equals (m +mK)(1+km/2mpmK). In the neighbor-
hood of the threshold E, =m&+~K, expression (2)
may be analytically continued as a function of E
from the real axis F. &8, into the upper half of
the complex E-plane and thus onto the real axis
8 Z, . If ar is large and negative, expression
(2) has a pole P in this neighborhood, corre-
sponding to k = -i/(al+ ibi). This pole lies close
to the real axis E &E„but on the (unphysical)
lower half-plane reached by analytic continuation
from the upper half-plane across the cut which
must exist between E =E, =m +mK and the w -Z
threshold E =mZ+mz. With solution (a-), this
particular pole occurs in the T =1 amplitude;
with solution (b-), it occurs in the T =0 amplitude.
As pointed out earlier, ' this pole leads to a res-
onance-like energy dependence of Im(K P I T IK P)
in the unphysical region 8 &8, of interest for
K-meson dispersion relations, with peak at c.m.
momentum ik =ai/(ai'+br'). The effect of this
pole on the pion-hyperon scattering in this energy
region has now been investigated. For simplicity,
our remarks here will be confined to the T =0
state [relevant for the amplitude (b-)], since this
concerns only the z - Z system. For the T = 1
state [relevant for the amplitude (a-)], the situ-
ation is quite similar, although complicated by
the participation of both z - A and m

—Z systems
in general.

The amplitude for 7t
- Z scattering is related to

the K -p amplitude through the unitarity condi-
tion. This relationship may be made explicit by
expressing each in terms of the K-matrix. s For
T =0 and 8 &E„ the K-matrix has three real
elements, 9 n =(KNIKIKN), p =(KN IKlvZ), and

y =(wZ IKlwZ). The amplitude A(k) is expressible
in terms of these parameters as follows:

A(k) =a+ib = -n+i(q/E)P /{I+i(q/E)y], (3}

where q denotes the c.m. momentum of the g - Z

system at energy E. For s-wave interactions, '
the assumption that n, P, and y are energy inde-
pendent is appropriate in the neighborhood of
F. =E,. This is equivalent to the zero-range ap-
proximation of Jackson et al. ,

' i.e., to the assump-
tion of a constant amplitude A, provided the var-
iation of q /E is also neglected, a reasonable
approximation sufficiently close to 8 =F, After
identifying A with the expression (3) at E =E„ it
is convenient to choose for the remaining param-
eter the g - Z scattering phase shift o, at this
threshold energy. The g - Z scattering phase
shift o Z at energy E is then given by

q 1 1+ikX (-a-b tano, )—coto =-cote,
q, Z X ' 1+ikX(-a+b coto, )

where q, corresponds to the threshold energy
Eo, and X =Eo/E will henceforth be replaced by
unity.

For comparison with the expression (2), the
further approximation (q/q, ) -1 leads from Eq. (4)
to the following expression for the g - Z scatter-
ing amplitude,

(1 - ik&}sin&, + ikbcosu, i o,
1 ik(a-+ ib)

This expression (5) also has a pole at k = -i/(a+ib).
The expressions which correspond to (3) and (5)
without these approximations similarly have a
complex pole in common.

To indicate the energy dependence of o Z for
E &E„Eq. (4) may be written"

(q/q, )
I+ cotaZ =cot(cx, -8}, (6)

where 8 is the angle

e=g-y=arg( . -kf -arg(a+ib ] ~a+ ib)
'

shown in Fig. 1. When a is large and negative,
the pole P lies close to (and to the left of) the
positive imaginary k-axis. As 0 runs from 0 up
the imaginary axis past P, the angle 8 increases
rapidly from zero to large values (at most 180').
If b/a«l and -90'& go «0' (or 90' ~ so-180'),
then o Z will definitely pass through +90 between
energies E, and E,[1 - I/(2a'm mK)], an energy
range over which the zero-range approximation
appears well justified. However, the energy at
which o Z

=+90' does not generally coincide with
the peak of Im(KN I T I KN); in fact, if oo is posi-
tive and a little below 90, it is quite possible
that 0 Z does not take the value +90 within the
energy range for which the zero-range approxi-
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FIG. 1. The location of pole P on the complex k-plane.

mation is reasonable.
In Fig. 2, cross sections for T =0 g -Z elastic

scattering are plotted for solution (b-) as func-
tion of o,. As expected from general theorems, "
these cross sections show prominent S-shaped
or pointed cusps at the K -p threshold. For
-90' & o, (mod 180') & 0', quite a narrow resonance
(half-width &20 Mev) appears in these cross sec-
tions just below this threshold. We may make
the following remarks:

(j) The resonance will be still more pronounced
if the K-meson is scalar. In this case, the reso-
nant scattering takes place in a pi state, for
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FIG. 2. The total cross section predicted for T=0
7t —Z elastic s-wave scattering is plotted as function of
w —Z c.m. energy in the neighborhood of the K —P thres-
hold for various values of Oo, the x —Z scattering phase
shift at this threshold energy, assuming the E meson
to be pseudoscalar. Curve (a) depicts the energy de-
pendence of the T= 0 w- Z elastic scattering in the Pz&

state, for the case oo = 0, assuming the K meson to be
scalar.

Z~+ w++w',
K +

A +w +F
(Sa)
(Sb)

the pion-hyperon Q-values may be expected to
peak markedly at this resonance energy. A

peak in the w - A Q-values could occur only if
I=1 held for the resonant state. Other examples
are

Z++ w++ Id',
Z +w'+K+,

w' +p- Z +w' +K+.

(Qa.)
(9b)

(10)

Only an I=1 (or I=2) w - Z resonance" can pro-
duce strong w -Z correlations in reactions (Qb)

which the cross section must vanish at the pion-
hyperon threshold, and so falls off more rapidly
than for an s j. state as 8 decreases below the
resonant energy. This is illustrated for the case
c, =0' by curve (a) of Fig. 2.

(ii) The T =1 resonances obtained for solution
(a-), which gives the more satisfactory K -P
elastic cross sections at low energies, 3 will be
sharper than those for solution (b-) and will
persist for a wider range of oo, since the ratio
5,/a, for the former solution is smaller than

5, /a for the latter.
That the K-baryon couplings contribute in an

important way to the features of pion-hyperon
elastic scattering must be emphasized here,
since a number of authors" have attempted to
discuss pion-hyperon scattering in terms of ele-
mentary pion-hyperon couplings alone. However,
it is clear from Fig. 2 that the K +p-Z+w re
actions, which are due to the K-baryon couplings,
have a strong effect on the g - Z scattering near
the K -P threshold. A perturbation treatment
of the effect of the K-baryon coupling on the
pion-hyperon scattering is a very poor approxi-
mation. Similarly, the g - Z resonance discussed
here arises primarily from the K-interactions,
being a consequence of the properties of low-
energy K -N scattering; it therefore appears
unrelated with the pion-hyperon resonances in-
vestigated recently by Landovitz and Margolis, "
and Nauenberg ' for particular pion-hyperon
coupling schemes.

The existence and isotopic-spin character of
this resonance will have to be established in-
directly, for example:

(a) By examining the correlations between out-
going pions and hyperons in strange particle re-
actions. For example, in the reactions
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and (10), whereas either I=0 or I=1 (as well as
I=2) resonances can contribute to (9a).

(b) By the study of inelastic hyperon-nucleon
scattering F+P - I'+s +P, following the extra-
polation procedures discussed recently by Chew
and Low, ' which allow determination of wo - A
and w' -Z+ (as well as s' -Z ) cross sections
from observations on the recoil protons.

(c) The distribution of s -Z Q-values in the
capture reactions

Z~+w~+n,
K +d~

Z +m'+P,
(11a)
(11b)

may be substantially affected" by a g - Z reso-
nance just below E, since the final g -Z systems
of these reactions have c.m. energy below 8„
owing to the deuteron binding energy and the neu-
tron recoil energy. As discussed by Karplus and
Rodberg, "however, this situation is complicated
by the strong Z -N and g -N interactions in the
final state.

A detailed discussion of the derivation of the
expressions quoted in this Letter is at present
in preparation.
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