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Deuteron stripping experiments analyzed accord-

ing to the theory of Butler® are a nearly unique
source of information on the orbital angular mo-
mentum and single-particle widths of nuclear
bound states. Although a vast amount of such
information has been obtained in recent years, a
number of problems in the understanding of the
Butler theory remain. In particular the orbital
angular moment of the captured particle can nor-
mally be extracted unambiguously from the ex-
perimental data, but the reduced width cannot.
Furthermore the reasons for the success of the
Butler theory or for its failures, at large angles
for example, are not clearly understood.

We wish to point out that recent work by Chew
and Low in a different context cast light on these
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questions.? They show that in reactions in which
there is a contribution from the exchange of a
single particle, there can appear isolated poles
in the renormalized Born approximation to the
cross section, usually for unphysical scattering
angle, and that the residue at these poles can be
simply related to quantities of physical interest.?
Stripping is such a reaction and the Butler theory
is the renormalized Born approximation. To see
this let us write the Butler theory for the process
A(d,p)B. The Feynman graph corresponding to
the lowest order Born approximation is shown in
Fig. 1. The cross section in the center of mass
corresponding to this diagram with the vertices
and propagators treated exactly, that is renor-
malized, is!
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where R is the nuclear reaction radius, 7»; the
triplet effective range, and a is related to the
deuteron binding energy, Bg: a*#*/m =Bg, where
m is the nucleon mass. k,i is the wave number
of the captured neutron, captured into a state
with orbital angular momentum /. © is related
to the reduced width y by 7 =3%#%6%/2mR. M4 and
Mp are the masses of the target and daughter
nuclei. The term in brackets contains the usual
spherical Bessel functions. All wave numbers
are appropriate to center -of -mass motion.

The terms in Eq. (1) are easily interpreted in
terms of Fig. 1. The factor a/(1 - a7,) is related
to the normalization of the asymptotic state of
the deuteron and hence is the probability for dis-
association corresponding to vertex 1.* The en-
ergy denominator or propagator for the neutron
intermediate state is 1/(¢ +kn2). At vertex 2 a
neutron with orbital angular momentum / must
be captured at radius R. The probability that

l-art (q"’+kn2)2 (21+1)2

- . 2
lhl_l(zknR) (l+1)hl+1(zknR)
hl(tknR)

)

this partial wave and its derivative are in the
neutron plane wave with momentum a is given
by the term in brackets, and the probability that
this wave will be captured is just the reduced
width, €. The other factors are kinematical.
Equation (1) has a second order pole at the un-
physical momentum transfer ¢*=-k,*. Using
energy conservation, we see that this corre-
sponds to a scattering angle with cos6>1, and
hence to an angle beyond zero, but for large in-
cident deuteron energy, not very far beyond. At
the pole all other contributions to the stripping
process, for example compound nucleus, etc.,
are finite, Thus at the pole the Butler theory is
exact, since it is infinitely larger than all other
contributions, and the residue at the pole is ex-
actly given by Eq. (1). If one measures the cross
section, the only unknown in Eq. (1) is the re-
duced width. This may be found by finding the

399



VoLUME 2, NUMBER 9

PHYSICAL REVIEW LETTERS

May 1, 1959

residue at the pole, that is by dividing the exper-
imental cross section by the theoretical one, ex-
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where now do/dQ is the experimental cross sec-
tion. Figure 2 presents the results of such an
analysis for the reaction C*%(d,p)C!3.5 We see that
the data allow an unambiguous extrapolation to the
pole.

In our analysis we exploit the dependence of
the Born term on momentum transfer through the
energy denominator 1/(¢* +%,%). Usually it is the
Bessel function term that is of interest since it
has a strong dependence on /. For extracting the
reduced width, this term can be a hindrance
rather than a help once [ is determined since it
can vanish, or be small at small angles, and thus
can give trouble when we divide through by it and
try to extrapolate. Figure 2 represents a par-
ticularly favorable case, but it is by no means
unique. A further complication can be caused at
very small angles by the Coulomb scattering.
This is partly avoided by using high incident
deuteron energies and low-Z targets, but even
for higher Z it should be possible to make the

FIG. 1. Lowest order Feynman graph for the reac-
tion A(d, p)B with incoming deuteron wave number kg,
outgoing proton Kp, and momentum transfer q,
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cept for the reduced width, and then extrapolating
to the pole. Doing this, we obtain
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extrapolation if one uses stripping theory with
Coulomb corrections, so long as the Coulomb
field can be treated adiabatically,® since then
the particles may be thought to “ride up” the
Coulomb barrier and “slide down” the other side
without polarization of the internal deuteron mo-
tion. So long as this is so the Born approxima-
tion, with Coulomb wave functions,” will still be
very large at ¢* = -%,,” and the extrapolation may
be used.

From our point of view the validity of the But-
ler theory rests in the near vanishing of the en-
ergy denominator at small angles. Thus the
Butler theory, or Born approximation in general,
works not only when interactions are weak, but
also when energy denominators are small. In
fact if the energy denominator is small, the Born
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FIG. 2. The function of Eq. (2) plotted against the
cosine of the center-of-mass scattering angle for the
reaction C!2(d,p)C'?, C!3 being left in the 3.08-Mev
excited state,’ with /=0 and R=4.2 f. Extrapolation
to the pole at cos6 =1.15 gives (2Jg+1)62=12.5%
The experimental differential cross section is also
shown plotted on the displaced right-hand scale.
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approximation will get better the larger the in-
teraction matrix elements. At larger angles the
Butler theory fails because it is no longer “riding
the shoulder” of the pole.

It is clear that methods such as these may be
used in the analysis of a large number of direct
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It has been pointed out! that Coulomb excitation
of atomic electrons by the incident proton and the
excitation of atomic electrons caused by the accel-
eration of the target proton in a proton or neu-
tron collision may be expected to take place with
appreciable probability. It was also brought out
that in classical mechanics these effects do not
matter because of the smallness of the energy
changes and that in a quantum treatment the
classical phenomenon of the disappearance of an
electron with original energy and its reappearance
at nearly the same angle with slightly changed
energy is replaced by the effect of cross product
terms on coherent scattering with the incident
wave. For special channels these effects did not
compensate! the incoherent scattering. It ap-
peared possible, therefore, that corrections for
atomic electron effects to low-energy p-p scat-
tering comparable with those for vacuum polari-
zation come under consideration. On the other
hand, the existence of compensations at high en-
ergies due to the smallness of the proton wave-
length in comparison with atomic dimensions was
realized.! Calculations by de Wit, Fischer, and
Zickendraht? have since then shown in the cases
of monopole, dipole, and quadrupole excitation
exact compensation of coherent scattering inter-
ference effects by inelastic scattering provided
contributions of all channels for different orbital
angular momenta L of the proton wave are com-
bined and the following approximations are made:
(a) the asymptotic phase k7 - 1 L7 - 5ln{2k7)
+argl(L +1 +14n) of the regular Coulomb function
is used and a corresponding replacement of the

true by the asymptotic phase is made for the
s-wave scattering anomaly, (b) in the evaluation
of radial integrals all high-frequency parts in-
volving 2kr in the phase are neglected. This
compensation was interpreted as an indication of
the smallness of effects of electron Coulomb ex-
citation on observed scattering. It proved diffi-
cult, however, to extend the method of summation
over L to the evaluation of the residual effect,
improvements on the asymptotic phase leading to
difficult sums. On the other hand, a general
reason for the compensation becomes apparent
as previously expected! for high-energy scatter -
ing, the nucleon wavelength being short in com-
parison with atomic dimensions even at  Mev.
The present note is based on calculations employ-
ing this viewpoint. Its formal aspects had been
previously carried out for Coulomb excitation of
nuclei® employing classical action functions S
and S, for the ground and nth excited states.
These S give solutions of the wave equation by an
extension of the exp(iS/%) representation of the
wave function for the case of one S. Classical
mechanics for relative motion with atomic quan-
tum excitation is obtained by keeping the first
two terms in the expansion of each S in powers
of Z. This approximation, for which the com-
pensation effect is practically exact, is justifiable
provided the dimensions of the region occupied
by the perturbing energy are large in compari-
son with the nucleon wavelength, a condition
satisfied for the hydrogen molecule as well as
the atom. Within wide limits the equivalence to
classical mechanics holds independently of the
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