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served values of the charge and magnetic-mo-
ment radii indicate that this resonance should
occur at y,,~3.5m7,z (square of the pion momen-
tum in the 7-7 barycentric system). In Fig. 1
the function lFﬂ(s) |2 is plotted for this value of
v, and several values of the width I'. In Fig. 2
the pion form factor is plotted for s<a. Since it
is less than one over most of this region, its ap-
pearance in the denominator of the integral of
Eq. (9) will produce an additional enhancement.

In conclusion, our Eq. (9) for the weight func-
tions together with the approximation given in
Eq. (10) for the pion-pion scattering amplitude
suggests that a 7-7 resonance of suitable position
and width could lead to agreement between dis-
persion theory and many aspects of nucleon elec-
tromagnetic structure. Detailed calculations are
in progress.

We are indebted to Professor Geoffrey F. Chew
for his advice throughout this work, and for ad-
vance communication of some of the results on

pion-pion scattering. We also acknowledge the
help of James S. Ball and Peter Cziffra in obtain-
ing Eq. (4).

*This work was done under the auspices of the U. S.
Atomic Energy Commission.
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Einstein’s equations for the gravitational field
are valid for any system of coordinates and make
it difficult for one to distinguish physical effects
from effects of the curvature of the coordinate
system. In consequence there is no obvious de-
finition for the energy of the gravitational field.
The usual definition, in terms of a component
t,? of the stress pseudotensor, makes the energy
depend very much on the system of coordinates
and is thus not satisfactory.

For physical problems one can restrict the
gravitational field to be weak, of the order of v,
the gravitational constant. One can then use a
system of coordinates for which the g v differ
from their values in special relativity by quanti-
ties of the order y. Even if one restricts oneself
to such coordinate systems (and renounces, for
example, the use of polar coordinates), one can
still make arbitrary changes of order vy in the
coordinate system and such changes produce
changes in the energy of the same order as the
energy itself, so the difficulty persists.

In discussing the question people have usually
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lost sight of the primary requirement for the
energy, that it shall be a useful integral of the
equations of motion. The development of the
Hamiltonian form of gravitational theory' enables
one to make a new attack on the problem, taking
this utility requirement into account.

In the Hamiltonian form one deals with the state
at a certain time x°, which state is described by
dynamical variables for all values of x*, x%, x°
for this one value of x°. It is found that the only
variables needed to describe the gravitational
field are the six g,.; (r,s=1, 2, 3) and their con-
jugate momenta p7S. The four g, do not enter
into the description of the state at a certain time.
They are needed only to provide a connection be-
tween the state at one time and the state at a
neighboring time.

We are thus led to the condition that the energy
at a certain time should involve only the g, ¢, »79,
and the nongravitational variables and should not
depend on the g0 The usual definition in terms
of ¢,° does not satisfy this condition, nor does the
definition recently proposed by Mgller.?
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We shall take over the Hamiltonian worked out
in reference 1, keeping the same notation except
that we shall change the sign of all the guy to
make g,, negative (which entails changing also
the sign of the p”S). Thus we have the Hamil-
tonian

1
H =f{(-g00) ZSCL +groersﬁcs}d3x, 1)

where J¢; and 3C; are functions only of the g,
p7S, and nongravitational variables, namely

-1, 7s s -1, 2 s, uv
By =K 0 bys-3b, b )+1K (K e"") e

-1, 2 uv
X(2gms-g,,su)+{K K e )u}v+3€ML,(2)

uv uy
Hs=0" 8ups = 20" 845y + ¥ (3_)

where a lower suffix added to a field quantity de-
notes an ordinary derivative. We have also the
constraints

ZCL::.'O, ZCszO. 4)

In an ordinary Hamiltonian theory one takes
the Hamiltonian itself to be the total energy, as
it is always an integral of the motion. This will
not do in the present theory, because, on account
of the constraints (4), the Hamiltonian (1) equals
zero. So long as one considers the exact equa-
tions of motion there does not seem to be any
useful integral that one could take to be the total
energy.

For the weak-field approximation it is reason-
able to divide the Hamiltonian into two parts, a
part that gives the main motion corresponding to
£,0° -0 0 and a part that gives the correcting
tdrms dlie to small deviation of the &0 from the
values -6,,0. These two parts are

Hpoin= f (w+3¢y,7) d, )

where

1 1
W=py Dy~ 2Dy Pss+ 3@ sursu ~ Errulssu)

+ %(g'rsrguus - gursgusr) ’ ()
and
Heor =f{%(1 +800)&rsrs ~ Errss - Cmr)
- grO(zprss B MMr)}dax' )

The constraints in this approximation are

Ersys ™ &rrss " FmL=0 20,55~ Hpgy=0. (8)

The constraints now cause H .. to have the
value zero, but not Hp,,;.. The difference has
arisen because of the neglect of a surface term
at infinity in the derivation of (5), such neglect
being justifiable because a term of this nature
in the Hamiltonian does not influence the equa-
tions of motion.

Let us now consider an example for which, at
large distances 7 from the origin, there is no
matter present and g,.., and p, . are of order
#~2. Such examples often occur in practice. We
now have w of order »~* at large distances, so
Hpain converges. It is a constant of the motion,
provided we take values for the £u0 which pre-
serve its convergence. Hy i, is now a useful
integral of the motion, because its constancy is
not a consequence merely of the constraints (8).
We may thus reasonably define H to be the
total energy.

For an example in which there is continuous
emission of gravitational waves, &rsu and p rs
at great distances are of order »™*. H, ... now
does not converge, corresponding to the total
energy of the gravitational waves being infinite.
The energy of physical importance is now the
total energy within a large region R. To be able
to obtain such an energy we need an expression
for the energy density, at any rate for large
values of 7.

The expression (5) for the total energy in the
case of convergence suggests that we look upon
w+3¥prr in general as the energy density, so
that w is the energy density of the gravitational
field. Let us examine whether this is permissible
taking first the special case when our coordinate
system is such that

main

&u0="- %,0° 9)
The conservation of energy would require that
o(w+3y;)/0x° =k, (10)

where &, is some 3-vector, which can be inter-
preted as the energy flux.

Now the first of the constraints (4), if evaluated
from (2) to the second order in y, gives

w3y = - {KLEE), ), (11)
This leads immediately to (10) with
k‘u - - {K ‘1 (Kzeuv)u}()'

But this %, cannot be interpreted as the energy
flux because it is of order y, whereas the energy
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density w in the absence of matter is of order
2

Y -

We have, with the conditions (9),

3(w+3Cy7 )/ 0x° =_f[w+JCML, w’ +3¢y 1d%. (12)

We see from (6) that w involves only undifferen-
tiated momentum variables and dynamical coor-
dinates differentiated not more than once, and
we may assume that JCysy, is similar. It follows
that [w+3¢y7,, w’+3¢’yr1 ] cannot involve (x-x’)
differentiated more than once. Since it is anti-
symmetrical between the two points x and x’,
we can infer that it must be of the form

[w+ZCML, w' + 3y 1= oy + k)18, (x-x7), (13)

for some 3-vector k,. Substituting this into (12),
we get just the result (10). The gravitational
part of k,, which comes from [w,w’], is linear
homogeneous in the p,.¢ and linear homogeneous
in the g,.,, S0 it is of order y?, the same as w.
So this &, can be interpreted as the energy flux
and the conservation law is verified.

When the conditions (9) do not hold, the above
deduction gets spoilt by the extra change in
w + 3¢z, produced by Heoy, given by (7). The
source of the trouble is that w+ 3Gy gets altered
if one makes a change in the coordinate system
of order y. The alteration consists of two parts,
corresponding to the two terms in the integrand
in (7). If the coordinates x” are changed by
x7=x"+b", where the b” are functions of x*, x?,
x° of order y, the change in w+3Cy,; is

6, (w+ SCML) = -J'br’[w +3q1s 2D yss’

-¥ a0 (14)

If the hypersurface x° = constant is changed by
each point of it being shifted normally through a
distance a, where a is a function of x!, %%, x3, of
order y, the change in w+3G; is

8w +3Gyr) = fa' [w+3arrs &ysyrst= & yystst
- :K:lML]de ’, (15)

The energy density, defined as w+3C;;, is sub-
ject to these two uncertainties.

It may easily be verified that, when the condi-
tions (9) hold, the component ¢,° of the stress
pseudotensor is just equal to w, so the conserva-
tion law proved above is not a new result. When
the conditions (9) do not hold, #,° differs from w
by terms involving derivatives of the &u0 If the
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energy density is defined in terms of £°, it is
subject to the above two uncertainties and a fur-
ther uncertainty because of its dependence on
the &0 So the use of w instead of £,, makes
some improvement.

When the total energy is convergent it can be
expressed as a surface integral at infinity. With
the present definition of energy this integratl is,
according to (11),

-fx 1 ®&2M), ds, (16)

With the usual definition in terms of the pseudo-
tensor, it is

f{ -e% 12k L g2e4) -2, p”’}dsv. @)

The two expressions agree provided £u0=" 6 0
+0(r™') at large distances.

On account of the uncertainties (14), (15),
there does not seem to be any general definition
for the energy density independent of the coor-
dinate system. However, there is an important
special case when these uncertainties vanish,
namely, when there is no matter present and the
gravitational field, to the first order of accuracy,
consists only of waves moving in one direction.

In the absence of matter, (14) and (15) give,
with the help of (6),

1
0,0 =38, (8,55~ Os

b
uss.

wus ™ Ersuburs’ (18)

us)"'grs'r

Oqw = -2p, 4, (19)
Let us suppose the gravitational field consists
only of waves moving, say, in the direction x°.
Then the derivatives Eysu and p - will vanish
unless # =3. If we now make a change in the
coordinate system so as to preserve the condition
that the gravitational field consists only of waves
moving in the direction x®, we can introduce only
coordinate waves moving in the direction x3.

This requires that the derivatives 3, and a,
shall also vanish unless #=3. We now get 6,w
=0 and

8w = -2pgq Gyg.

The second of the constraints (8) now gives p 3
=0, so §,w also vanishes.

We can conclude that the energy density of
gravitational waves moving in a single direction
is well-defined, independent of the coordinate
system. It is only the interference energy den-
sity of waves moving in different directions that
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is subject to uncertainties.

Let us go back to the problem of determining
the total energy within a large region R surround-
ing some accelerating masses that are continu-
ously emitting gravitational waves. Let us take
a solution of the field equations in terms of re-
tarded potentials without any ingoing waves.

Then for large values of », the main part of the
gravitational field, of order »™!, consists of
waves moving in only one direction at each point,
namely radially outward. The energy density w
at large distances 7 is now well-defined, in-
dependent of any transformation of coordinates
that preserves the character of the solution of
being expressible in terms of retarded potentials,
and does not introduce any ingoing coordinate
waves.

The total energy within the region R, defined
by

fR(w+3CML) d’x, (20)

is now also well-defined, because any transfor-
mation of coordinates that affects only the cen-
tral part of R will not change (20), on account of
(11), while any permissible transformation of
coordinates in the outer part does not affect w
and so does not affect (20). Thus the uncertain-
ties in the energy density defined by w +3¢;; do
not affect calculations of the gmission of energy
by gravitational waves.

The author’s stay at Princeton was supported
by the National Science Foundation.
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The notions of “global” or “universal” symme -
tries, wherein the Z and A hyperons are treated
as members of the same multiplet structure in
certain or all of their strong interactions, have
been widely discussed, ! although a decisive
experimental determination of the relative Z-A
parity is yet to be carried out. These detailed
theories require this relative parity to be even,
but the possibility that it is odd has also been
mentioned.*>® Several rather difficult experi-
ments have been suggested to determine the re-
lative Z -A parity.®™® Furthermore, analyses of
the forward angle K-meson—proton dispersion
relations have been performed in order to deter-
mine simultaneously the relative Z -A parity and
the relative K-A parity.® '° It was emphasized
some time ago,!! and again recently,!? that there
are likely to be serious ambiguities in this pro-
cedure. In particular, one must at present make
the somewhat subjective and certainly unjustifi-
able assumption that, in the case of odd relative
Z -A parity, the renormalized pseudoscalar
coupling of K mesons is not an order of magni-
tude greater than the renormalized scalar coup-

ling. In this note we shall discuss another ex-
periment for determining the relative Z -A parity
which may be feasible at this time.

Chew'® has suggested a method of extracting
information from differential cross sections by
their extrapolation to nonphysical values of mo-
mentum transfer. Thus an examination of the
400 -Mev neutron-proton angular distribution in
the backward directions has yielded a new evalua-
tion of the pion-nucleon coupling constant.* We
should like to suggest an analogous procedure
applied to the hyperon-nucleon data concerning
such processes as:

(a) Z +p—=A+n,
(b) = +p~Z%+n,
(©) Z*+p=-2 +p,
(d E +p=-A+A,
() E +p=~E +p.

Since at this time only processes (a) and (b)
have been abundantly seen, we confine ourselves
to a discussion of what we may be able to learn
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