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in the x and y directions& V~ and Vy, are equal.
The electric current is J.

The subsequent motion will then be governed
by the Boltzmann-Vlasov equations:
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and by the Maxwell equations:
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Several authors, notably de Hoffmann and
Teller, ' have treated the conditions which obtain
across a fully developed shock front in an ion-
ized gas in the absence of external fields. Pets-
chek' has derived the equations governing the
growth in time of such a shock from a magneto-
sonic pulse of large amplitude. Ferraros has
discussed large-amplitude, circularly-polarized
Alfven waves and has found that such waves, if
thermal motions are negligible and if there are
initially no forces in the direction of propagation,
will propagate undistorted in time. However, it
is shown here that plane-polarized Alfven waves
of large amplitude develop rapidly into hydro-
magnetic shocks.

Consider the motion of an ionized gas consist-
ing of electrons of mass m and positive ions of
mass m, each of equilibrium density ns cm
infinite in all directions, and immersed in a
constant external magnetic field Bo directed
along the x-axis. Assume that (1) the gas re-
mains electrically neutral to a high degree
throughout the motion; (2) n koT/ B'« ,Iwhere T
is the maximum temperature at any point in the
gas; (S) the mean free path for collisions is»
all the characteristic lengths of the motion; (4)
the displacement current is always « the con-
duction current; and (5) Boa/4sno(m +m )«e .
The cireumstanees under which (1)-(5) apply are
well known. ~

Consider the following progressive pulse:

B =B,i+B Q, t)j,

E =E (x, t)k,

J = J' (x, t)k.

Note that the average electron and ion velocities

where

VB=O,

VXZ = -8B/8t,

vs =4m J,

(Sb)
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(Sd)

(4a)
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Z -=e ff vd'v —e ff vd v,

V=[m ff vd v+m ff udsv]/(m +m ).

Note that (Sa) and (Sb) are automatically satis-
fied. Further, assume that af /8y =Bf /8z =0.

Take zeroth-order moments of Eqs. 2 and
add:

dp/dt+ p8V„/8x =0,

where p is the mass density, and where

8 8—=—+V —.
dt =at x ex

(5)

(8)

Taking first-order moments gives, using as-
sumption (2) and Eq. (Sd),

dV - - (VXB)xB
p =JxB=

4

the x-component of which is
d x 8 ~B'+B '(x t)~~

Taking the first moment of (2a) alone and pass-
ing to the limit m /e-0 yields'

(8)

E +VB -VB=O, V =0.z xy y' ' z

Equations (Sc), (5), (8), and (9) can be combined
to give (at least through third order in B&/B,)

(B,'+ B ')v'/p = const. (1o)

It will now be apparent that Eqs. (5), (8), and
(10) are nothing more than the equations for a
nonlinear sound wave from ordinary gas dynam-
ics, with the replacement of (Ba'+B ')/8s for
the pressure, a frequent result in pIasma dynam-
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2B,(1+B */B ')'4 (4~p,)"
By I de/dz
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All variable qumtities are evaluated at the point
of maximum I dB /dx I at f = 0. The shock time
t is of the order of one period if B /Bo is of
the order of 1 and B& is approximately sinusoidal
at t = 0. Since the system of Eqs. (2)-(S) con-
serves entropy, ~ the discontinuity differs from
acoustical shocks in that it is nondissipative;
this is because the random or thermal effects
have been neglected by assumption (2).

It is not clear what process ultimately limits
the thickness of the shock; an eventual charge
separation seems more likely than the dissipa-
tion of energy by viscosity of ordinary acoustical
shocks. ~ It would also be of interest to calculate
the stability of the motion.
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ics. Equation (10) is the analog of the adiabatic
relation P/p& = const, with y = 2. The ordinary
gas-dynamical theory can be applied; in partic-
ular, the distortion of the wave profile in a plot
of B&'Q, t) vs x can be followed until a, vertical
tangent forms (i.e. , a shock front) by the usual
geometrical construction. The local velocity of
the wave motion is a,

d (8,'+ Bv' I B,'+ Bv'
8.
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which, of course, approaches the Alfven velocity
as B /B;0. Points of higher B R will gain on
points of lower, and the pulse will steepen to a
discontinuity. One point on a plot of B ' as a
function of x becomes vertical after a time t~,
which is readily shown to be'
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Recently the author developed a linearized
theory of excited plasma waves, ' in which elec-
tron plasma oscillations excited by an injected
beam into a uniform plasma were discussed in
detail. The dispersion relation in this case was
obtained as follows:

((u,/(u )' = 1+ (2/2p')+ (15/4p')+ ...
+ c/j(& p)*, -

where P=~/km'„$ =uk/uZ, (u '=npe'/mao, and
o =nk/np. uk and nk denote un orm velocity and
electron density in the beam respectively, while

uT = (2zT/m) and np are thermal velocity and
electron density in the plasma, respectively.
The relation (1) was derived without any ambi-
guity by using an approximation for IP I» l. Al-
though similar dispersion relations have been
derived and discussed to some extent by several
authors, ' ' more exact and detailed character-
istics of excited waves were needed for our pur-
pose. Equation (1) was solved for an excited
wave, where Im(e) =y&0, the complex frequency
being written as v =+0+iy. Each wave compo-
nent builds up from a ground level of initial dis-
turbance proportionally to exp(yt)exp(kz - v, t).
Except for very small values of v, Eq. (1) must
be solved numerically. The typical case with o
=0.1 and (u&/uT)'-~ is shown in Fig. 1, where
the frequency +, and the wave growth rate y,
both normalized by &gp, and the ratio of plasma
wave velocity u~ = ~,/k to the beam velocity u~
are plotted against the wave number k. These
characteristics are found to be not very sensi-
tive to finite values of (uf, /aT) .

The theory is applied to the excitation of a
standing wave in a uniform plasma layer with a
thickness 12. The wavelength X of the standing
wave is determined by the relation D =n(x/2),


