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not succeed. I came to the conclusion that Rick-
ayzen's method, in the Meissner effect problem,
does not provide a proper starting point for sub-
sequent low-order approximations, and that, at
any rate, his power expansions in g cannot be
trusted. If high-order terms contribute essen-
tially to jlon, they can certainly also affect
jtrans. The 'leading term" may well be equally
misleading in both cases.

In view of these doubts, it seemed a decisive
advantage first to transform the Hamiltonian
into a manifestly gauge-invariant form [refer-
ence 2, Eq. (2) with (1) and (17)]. In this new
representation, the current operator j is again
obtained as a power series in g [Eq. (10)], but
now jlo„vanishes automatically, to all orders
in g. Th1s does not prove, of course, that the
power series for 3trans converges rapidly. But
Pines' and Schrieffer's criticism of this expan-
sion is groundless and futile because it is based
on a comparison with a low-order approximation
that is in essence the same as Rickayzen's. 7
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YTo realize this, one need only follow the argumenta-
tion in reference 1 (on p. 408). Note the replacement
of 40 and Cp by eigenfunctions of a reduced Hamiltonian,
and compare with reference 3.

UNSTABLE PLASMA OSCILLATIONS
IN A MAGNETIC FIELD

E G. Harris
Oak Ridge National Laboratory, ~

Oak Ridge, Tennessee
(Received October 6, 1958)

This work treats the small amplitude oscilla-
tions of a fully ionized quasi-neutral plasma in
a uniform time-independent externally produced
magnetic field. Motions of the ions and pertur-
bations of the magnetic field are neglected. The

distribution function f(r, v, t) for the electrons
satisfies

Bf ~ Bf z 1 ~ Bf—+ v'—- —(E + —vxB)'~ ——0)~t ~r m c ~v

and the electric field which appears in Eq. (1)
satisfies

& E =- V P=-4neffd'v. (2)

The distribution function is assumed to depart
only slightly from the zeroth order distribution,
and the spatial dependence of the perturbation of
the distribution is assumed to be given by the
factor exp(ik r). Equations (1) and (2) are line-
arized and then solved by taking the Laplace
transform and following the procedure of Bern-
stein. ' lt is found that the Laplace transform of
the potential is given by

y(g) = —k, g(v, k, s)d'U /[1 - Y(s)]. (3)k (d&g

In Eq. (3), s is the Laplace transform param-
eter, v =eB/mc is the cyclotron frequency and

g(v, k, s) is a function related to the initial value
of the perturbation of the distribution function.
Y(s) is given by

Y(s) = 2mi, P dv vade~
n=-~

/
cu nZ Ik v /cuc~E ni&& cy
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v~ Bv~ (s+ikzvg+inarc)
X 'i

Y(s) = 1 for Re(s)&0.

If Eq. (5) is satisfied then there will exist plas-

BUz (s+'Lkzvz +tn(dc) I
~

In Eq. (4), &o = (4m''/m)~ is the plasma fre-
quency, kz is the component of k along B, and

k~ is the perpendicular component. Similarly,
v~ is the component of v along 8 and v~ is the
perpendicular component. J„is the Bessel func-
tion of order n. E(vz, Uz) is the seroth order
distribution. It is normalized so that its integral
over all of velocity space is unity.

We are particularly interested in zeroth order
distributions which cause the denominator of
Eq. (3) to vanish for some values of s which have
positive real parts. That is,
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ma oscillations whose amplitudes increase ex-
ponentially. We shall exhibit two distributions
for which this is true .First, we consider

Substituting Eq. (8) into Eq. (4) gives

6(v - V)
S'(v, v~) = 6(vs)

277 Vg

Equation (4) becomes

(R ) + I fk t -1 d
Y{s)=
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I'X kkj [(s+Iksasl)/roc+in]
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(k j [(s+ Ikzas I)/a&+in]* '

where b = k&V/toe.
In order to determine whether unstable oscilla-

tions exist we use the Nyquist criterion. ' That
is, we note that Y(s) defines a mapping of the
right half of the s-plane onto a region of the Y(s)
plane, and the boundary of this region is the
curve Y = Y(iso), - ~ & to+ ~. Equation (5) will be
satisfied if the curve Y= Y(i&@) encloses the point
+1. If we plot the Nyquist diagram of Eq. (7) we
find that for a suitable choice of b, k~, hz, and

(~p/~c) unstable oscillations exist. If k = 0,
unstable oscillations exist only for b&1.84 [the
first maximum of J', (b)].

The distribution given by Eq. (6) was first
studied by Malmfors who concluded that insta-
bilities existed. However, an error in his work
was found by Gross. 4 Malmfors and Gross con-
sidered only the case kz = 0. Gross showed that
there was no instability for b«1 and conjectured
that there was no instability for any L Sen' was
able to show numerically that there were insta-
bilities for large b. Sen also considered only
the case k = 0. Our analysis indicates that the
greatest instability occurs when neither k nor

k& are zero. Instabilities of this sort may, as
Malmfors suggests, account for the noise in
trochotrons reported by Alfven et al. '

Vfe have also considered the distribution

where x = a&'k&'/2&ac* and In(A) =I n{X) is the
modified Bessel function of the first kind. When

ks = 0 Eq. (9) may be shown to agree with a re-
sult of Bernstein. ~ There is neither instability
nor damping. It may also be shown that there
can be no instability for kz —0 although there
will be Landau damping unless nz = 0. Instabi-
lity can only occur when neither k& nor ks is
zero.

We have considered the intermediate case k&
= kz with x =0.5 and nz =0. A plot of the Nyquist
diagram showed that there were unstable oscilla-
tions for vp/(a)~ &1.1.

It is apparent from the structure of Eq. (9) that
a nonzero value of ez will decrease the instabi-
lity or increase the damping of the oscillations.

The instabilities discussed here may have
serious consequences for attempts to achieve
controlled thermonuclear reactions. The insta-
bilities are due to the anisotropy of the velocity
distributions. In most thermonuclear devices
anisotropies naturally arise. In high-energy in-
jection devices such as the Oak Ridge DCX and
the Russian OGRA the average particle veloci-
ties are greater perpendicular to the field than
along the field. The same thing is true to a
somewhat smaller extent in any machine that
relies on magnetic mirrors for containment.
Machines of the Stellarator type may produce
anisotropies by magnetic pumping. A further
study of these instabilities is in progress.

Q
z

exp(-v '/a ')
2 . 2

~z +~z
(8)

This distribution was chosen because it resem-
b1.es the Mmwell-Boltzmann function and allows
the integrals in Eq. (4) to be evaluated in terms
of known functions. The isotropy of the distri-
bution can be varied by changing a& and nz.
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(2a)

in the x and y directions& V~ and Vy, are equal.
The electric current is J.

The subsequent motion will then be governed
by the Boltzmann-Vlasov equations:

DEVELOPMENT OF HYDROMAGNE TIC
SHOCKS FROM LARGE-AMPLITUDE

ALFVEN%AVES

++v Vf + (E+vxB) - V f =0,
at + m

and by the Maxwell equations:

vF=O,

(2b)

(Sa)
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Several authors, notably de Hoffmann and
Teller, ' have treated the conditions which obtain
across a fully developed shock front in an ion-
ized gas in the absence of external fields. Pets-
chek' has derived the equations governing the
growth in time of such a shock from a magneto-
sonic pulse of large amplitude. Ferraros has
discussed large-amplitude, circularly-polarized
Alfven waves and has found that such waves, if
thermal motions are negligible and if there are
initially no forces in the direction of propagation,
will propagate undistorted in time. However, it
is shown here that plane-polarized Alfven waves
of large amplitude develop rapidly into hydro-
magnetic shocks.

Consider the motion of an ionized gas consist-
ing of electrons of mass m and positive ions of
mass m, each of equilibrium density ns cm
infinite in all directions, and immersed in a
constant external magnetic field Bo directed
along the x-axis. Assume that (1) the gas re-
mains electrically neutral to a high degree
throughout the motion; (2) n koT/ B'« ,Iwhere T
is the maximum temperature at any point in the
gas; (S) the mean free path for collisions is»
all the characteristic lengths of the motion; (4)
the displacement current is always « the con-
duction current; and (5) Boa/4sno(m +m )«e .
The cireumstanees under which (1)-(5) apply are
well known. ~

Consider the following progressive pulse:

B =B,i+B Q, t)j,

E =E (x, t)k,

J = J' (x, t)k.

Note that the average electron and ion velocities

where

VB=O,

VXZ = -8B/8t,

vs =4m J,

(Sb)

(Sc)

(Sd)

(4a)

(4b)

Z -=e ff vd'v —e ff vd v,

V=[m ff vd v+m ff udsv]/(m +m ).

Note that (Sa) and (Sb) are automatically satis-
fied. Further, assume that af /8y =Bf /8z =0.

Take zeroth-order moments of Eqs. 2 and
add:

dp/dt+ p8V„/8x =0,

where p is the mass density, and where

8 8—=—+V —.
dt =at x ex

(5)

(8)

Taking first-order moments gives, using as-
sumption (2) and Eq. (Sd),

dV - - (VXB)xB
p =JxB=

4

the x-component of which is
d x 8 ~B'+B '(x t)~~

Taking the first moment of (2a) alone and pass-
ing to the limit m /e-0 yields'

(8)

E +VB -VB=O, V =0.z xy y' ' z

Equations (Sc), (5), (8), and (9) can be combined
to give (at least through third order in B&/B,)

(B,'+ B ')v'/p = const. (1o)

It will now be apparent that Eqs. (5), (8), and
(10) are nothing more than the equations for a
nonlinear sound wave from ordinary gas dynam-
ics, with the replacement of (Ba'+B ')/8s for
the pressure, a frequent result in pIasma dynam-


