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FOR EXCITON FORMATION

W. H. Kleiner and L. M. Roth
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(Received March 26, 1959)

In their study of the direct exciton in germanium,
Zwerdling et al.! observed a second absorption
peak (1.5°K) about 0.005 ev above the absorption
identified with the direct exciton. Since the
separation of the two peaks was several times
greater than the binding energy of the exciton,
this could not be an excited state of the exciton
in the ordinary sense, and no explanation has
heretofore been given. However, recent experi-
ments by Macfarlane et al.? have established that
the ZLRB sample was strained, due to the dif-
ference in thermal contraction of the sample and
its glass substrate, and that the strain accounted
for the observed discrepancy in the position of
the exciton line reported by the two groups, and
for the presence of the second peak in the ZLRB
data.

The appearance of the second peak should
actually be expected in the presence of shear
strain, since shear splits the valence band edge
into two edges. There will then be two exciton
levels, one associated with each valence band
edge, as indicated in Fig. 1. The splitting and
shift of the exciton with strain can, in fact, be
used to obtain information about the deformation
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FIG. 1. An illustration of direct exciton formation
transitions in Ge with general homogeneous strain
present. (The exciton levels have been placed below
the conduction band edge by an amount equal to their
binding energies, and are not to be confused with one~
electron levels.) 2A denotes the splitting of the valence
band, E the mean gap between the valence bands and the
conduction band (E =E, in the absence of strain), and
€4+ and e. the binding energies of the two excitons.
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potential for the band edges. To analyze the data
here we shall assume that the exciton binding
energies €, and €_ are independent of strain, that
is, equal to the binding energy in the absence of
strain. This is reasonable since the binding en-
ergy is determined largely by the small electron
mass. The splitting 2A of the valence band edge
and the mean shift E -E, of the gap are then de-
termined from the position of the two exciton
lines in the presence of strain' and the single
exciton line in the absence of strain.?

The effect of a homogeneous strain S; (i=1,
2, ..., 6, where S,=2S z) on the conduction and
valence band edges is conveniently described by
Hamiltonians derived by symmetry consideration

5 =36, +D45(S, +S, +S,), (1)
3e¥ =3,Y +D U (S, +5, +S5) + 8D, [(7,2- } F?)S, +c.p.
+§Du'[%(Jsz +JzJy) Sg+e.p.], 2)

where the D’s are deformation potential coeffi-
cients, #J is the angular momentum of the hole
(J=3/2), and the JC,’s describe the situation in
the absence of strain; D d is the shift per unit
dilatation of the band edge, while IZDuI is the split-
ting of the band edge induced by uniaxial shear
strain per unit extension along the [001] axis;
12D,,’| gives the splitting similarly for the [111]
axis.* Finally, “c.p.” means “cyclic permuta-
tions of x, y, and z,” referring to the crystallo-
graphic axes. The deformation potential param-
eters D;°-Dg¥, ID,l, and ID,’l may be deter-
mined from the experimental splitting and mean
shift measured for appropriate strains.

The data considered here! are for a Ge sample
in the form of a very thin slab of uniform thick-
ness with slab normal in the [110] direction. The
sample is cemented to a supporting substrate at
roughly room temperature. When the tempera-
ture is changed, the difference between the ther-
mal expansion of Ge and the substrate induces
a strain in the sample. If the sample, substrate
and cementing are homogeneous and the substrate
is elastically isotropic parallel to the interface,
as assumed here, then the symmetry implies
that the strain tensor in the sample is uniform,
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Table 1. Splitting of the valence band and mean shift of the direct energy gap for strains induced in thin slab

samples, for three directions of the slab normal.

Slab
normal [001] [111) [110]
Strain 5,=5,=S, S;=-1S, $,=8,=8;=5(2-2)S, S;=5,=3(1-2)8, S;=8,
components S4=Ss=s‘;=0 S4=85=Sé=-'§(1+k)s S4=Ss=0, SG=—(1+7\)S

A 2C45/Cy 2(Cyy +2Cy- 2C44)/(Cyy + 2C15+ 4Cyy) (€41 +3C15-2C49) /(Cyy + C1p+ 24y
A $a+0ip,is $a0ip, il 20+06D, 2+ 1D, V3|
E-E, @-00;°-Ds @-MN0£-DP)S 2-ND4€-DP)S

R ID,|/ID4€ -D P ID,'I/ID4€ -D P (iDuz’f%Du'z)”z/lDdc -D

diagonal with respect to coordinate axes in the
plane of the slab (x’,y’) and perpendicular to the
slab (z’), and isotropic in the plane of the slab.
We denote the principal strain components by

S, S, -AS, where A is determined by the condition
that the normal stress vanish. When referred

to crystallographic coordinates, the strain com-
ponents are S, =S, =3(1 -1)S, S;=S, S,=S;5=0,
Sg=-(1+2)S. With these values of the strain,

A and E -E, are readily determined from the
eigenvalues of (1) and (2). The results are given
in Table I together with corresponding results
for the slab normal in the [001] and [111] direc-
tions. The sign of D ;¢ -D;" is determined by the
sign of S. If the magnitude of S is unknown, val-
uable information can still be obtained in the
form of the ratio,

32-) A
R=d+n IE-E,|’ ®)

of shear to dilatation deformation potential coef-
ficients (See Table I).

Values of R derived from the ZLRB and the
MMQRS? data are given in Table II and are prob-
ably in error by less than 10 %.° The close agree-

Table II. The ratio R of shear to dilatation deforma-
tion potential coefficients derived from splitting and
mean shift of exciton lines. 2

Splitting Mean shift
20 |E-E,|
T(°K) A (milli-ev) (milli-ev) R
1.5 0.442 4.9 8.9 0.46
77 0.442 4,1 6.9 0.48

aElastic constant data were taken from M. E. Fine,
J. Appl. Phys. 26, 862 (1955).

ment between the values of R at the two tempera-
tures supports our interpretation of the data.

If we use the value -9 ev per unit dilatation for
DdC »de obtained from pressure measurements,®
we can deduce from R the value 4.5 ev per unit
strain for (D, 2/4+3Dy'2/4)Y2. This is somewhat
larger than the result E,=1.66 ev per unit strain
obtained by Brooks,* from piezoresistance data,
where -E, is an average of D, and D;,’. The
agreement is slightly improved if we use Brooks’
formula (6.34) to calculate D, and D’ separately
from the piezoresistance coefficients (m,, - m,,)/2
and m,,, respectively, giving D, =0.3 ev and
Dy’ =-2.9 ev, which yields (D,2/4+3 D, "2/4)"*
=2.5 ev. This may not be significant, however,
as the piezoresistance calculation neglects
anisotropy of the energy surfaces.

Further strain measurements on samples with
[001] and [111] slab normals would give D, and
D,,’ separately, and in addition it should be possi-
ble to determine the signs of D, and D,,’ by analy-
zing the magnetic spectrum. Finally, measure-
ments should be made on substrates with known
thermal expansion (so that S can be accurately
determined).

*A center for research operated by the Massachusetts
Institute of Technology with the joint support of the
U. S. Army, Navy, and Air Force.

1Zwerdling, Lax, Roth, and Button, Phys. Rev. (to
be published).

2Macfarlane, McLean, Quarrington, and Roberts,
Phys. Rev. Lett. 2, 252 (1959).

3Macfarlane, McLean, Quarrington, and Roberts,
Proc. Phys. Soc. (London) 71, 863 (1958).

4H, Brooks, Advances in Electronics and Electron
Physics (Academic Press, New York, 1955), Vol. 7,
p. 85. Brooks uses E;=-DgV, E,=-Dy=-Dy,' in
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1
Eq. (6.29).

5Since the magnitude of S is unknown for the ZLRB
data, only values of R can be derived. The sign of S

is known, 2 however, implying D4€ -D¥<0 as expected.
6W, Paul and D, M. Warschauer, J. Phys. Chem,
Solids 5, 89 (1958).

ELECTRICAL AND THERMAL RESISTIVITY OF DISLOCATIONS

Peter Carruthers®
Department of Physics, Cornell University, Ithaca, New York
(Received February 26, 1959)

For a long time it has been known that mechan-
ical deformation greatly reduces the electrical
conductivity of metals.'-® Since the change in
resistivity was consistently found to be one to
two orders of magnitude greater than expected
theoretically*~® for scattering by the strain field
of a dislocation, various authors have invoked
scattering by stacking faults, ® or the dislocation
core,*° to explain the discrepancy. Because of
the difficulty of the latter calculations, the re-
liability of such explanations has not been deter-
mined.

Recently, observations of the effect of disloca-
tions on the thermal conductivity of LiF at low
temperatures by Sproull, Moss, and Weinstock'*
have shown that the thermal conductivity is about
100 times less than that predicted by Klemens.*?
It seems that this discrepancy may be intimately
related to that of the electrical resistivity caused
by dislocations. The author'® has proposed an
explanation of the high thermal resistivity caused
by dislocations. The purpose of the present note
is to suggest that the scattering of electrons by
the strain field of an edge dislocation may be
much larger than found in previous calculations.*™®
Also, recent experimental results are compared
to the author’s theory® of thermal resistance of
dislocations.

The raison d’étre of the electron problem may
be best understood by comparing the author’s
theory of the strain field scattering of phonons
with that of Klemens.!? In both treatments the
scattering proceeds by the anharmonic forces.
The energy-conserving perturbation is then linear
in the displacement field and quadratic in the
phonon creation and annihilation operators. The
author’s theory is atomic in character; the com-
plicated sums are rearranged and simplified
without approximation. The approximation nec-
essary to work out a given problem are made
after the pertinent physical quantities have been
separated out. The essential feature is that the
Fourier component of the strain field displace-
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ment enters into the matrix elements.

Klemens, ** proceeding from a Gruneisen model
of the anharmonicities, obtains in the pertinent
matrix elements the Fourier component of the
dilatation (or rotation). In deriving this result
(for a simple cubic lattice), the approximation
was made that the component of the difference of
displacements v at lattice sites m and m-1 in the
direction of the linkage 7; is equal to (dvi/dxi)a,
where a is a lattice constant. The details of the
calculation are such that the (two-dimensional)
Fourier component of this function is then taken.
(That is, the approximation is made before the
sum over all lattice positions is taken.) It is
easy, using the exact difference of y-displace-
ments due to an edge dislocation, to demonstrate
that the integrand is not uniformly convergent to
Klemens’ approximation. Thus the author’s cal-
culation for the relaxation time 7 of a phonon in
the strain field of an edge dislocation differs
from Klemens’ result essentially by the factor
3[In(R/7,)]?. This result is

7 =4 ofIn(R /)| BpPcq. W

Here o is the dislocation density, 7, is the core
radius, b is the Burgers vector, R is the mean
range of the dislocation strain field, y is Grun-
eisen’s constant, ¢ is the velocity of sound, and

q is the wave vector of the phonon. The logarithm
factor directly reflects the long-range (logarith-
mic) nature of the displacement field, i.e., the
scattering “center” is not localized.

We now return to the problem of electron scat-
tering by the strain field of a dislocation. In this
case it is not evident that the core scattering is
negligible, since the wavelengths of the electrons
in conductivity are much smaller than those of
the phonons considered above. Further compli-
cations arise from the redistribution of the elec-
trons in a dilated lattice.* Harrison'® has shown
that for a hollow-core dislocation model, the
scattering is almost enough to account for the ex-
perimental results. However, it seems that such



