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constants in Eq. (1). This relation holds very
well for all the elements® for which these con-
stants are known.

We would like to use this opportunity to correct
a statement in our previous article.! Dr. D. E.
Mapother pointed out that on cooling through the
transition temperature in a magnetic field a
superconducting shell does not expel flux lines.
Therefore our measurements were performed in
the earth’s magnetic field.

*National Science Foundation Postdoctoral Fellow.
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THREE-LEVEL MASERS AS HEAT ENGINES™*
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Murray Hill, New Jersey
(Received January 16, 1959)

The purpose of this note is to demonstrate that
three-level masers's? can be regarded as heat
engines. The principal conceptual difference
between these and conventional heat engines is
that in the 3-level maser one is concerned with
the discrete energy levels of a particle’s internal
energy whereas in a conventional heat engine one
is concerned with the continuous spectrum of
energies associated with external motion of the
working substance. In treating a 3-level maser
as a prototype of heat engine, a particular ad-
vantage is, in our opinion, the resulting con-
ceptual simplicity. Especially, it is easily shown
that the limiting efficiency of a 3-level maser is
that of a Carnot engine.

Consider the system shown in Fig. 1. A three-
level system is assumed with all transitions
allowed and with no appreciable relaxation pro-
cesses. The usual 3-level maser terminology is
introduced by correlating transition 1 «——3 with
pump frequency v,, 1--2 with signal frequency
Vg, and 23 witﬁ) idler frequency v;. As a
further convention, the length of each energy
level line is drawn proportional to its population.
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FIG. 1. Three-level system in thermal contact with
two heat reservoirs.

The levels 1 and 3 are in thermal contact,
through a filter passing frequencies in the vicinity
of v, and rejecting frequencies in the vicinity of
Vi and Vgs with a heat reservoir at temperature
T,. The temperature is indicated in the figure
by showing schematically the Boltzmann distribu-
tion of this heat reservoir. Levels 2 and 3 are
in thermal contact with a reservoir at a lower
temperature T, through a filter which passes
frequencies in the vicinity of v; but rejects those
close to v, and Vg

Experimentally, the high-temperature reser-
voir might be realized by a gas noise lamp and
the filter by a wave guide cutting off the lower
frequencies. For practical purposes, however,
the single mode present in a wave guide does not
provide good thermal contact. The assumed
coupling situation to the low-temperature reser-
voir, on the other hand, was closely approxi-
mated by experimental conditions in some maser
experiments.® There, the idler transition of the
gadolinium three-level system was coupled,
through spin-spin interaction at frequency v;, to
a transition of the same frequency of cerium
ions within the same crystal. Thus, through the
resultant short spin-lattice relaxation time,
good thermal contact to the lattice heat reser-
voir at T, was established.

In the system described, for each quantum
hvp supplied by the hot reservoir, the energy
hv; is passed to the cold reservoir. The smaller
quantum kv  can be extracted at the signal tran-
sition if maser action prevails, that is if n,/n,>1.
Thus the efficiency of this idealized system in
maser operation is

77M= Vs/Vp- (1)

From the Boltzmann factors involved, we find

Ny _ Ny Mg hv; hvp
ﬁr-aﬁl_-exp kTo)x exp(-ET; . (2)
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After rearrangement, this becomes

hvg fvp T,-T
% exp| Rt S RS | B (3)
ny kT, \vg T,
In this formula, one recognizes the maser effi-
ciency 71 M and the efficiency of the Carnot cycle,
Ne = (T, - Ty)/T,. (4)

Using these, the condition for maser action is

Mpg <M (5)

This may be regarded as another formulation of
the second law of thermodynamics. Maser effi-
ciency equals that of a Carnot engine if the signal
transition is at the verge of inversion, »,-n,~+0

or Tsig" -ec,

As any heat engine, this system should be re-
versible so that it acts as a refrigerator. This
is indeed the case. Suppose a quantum th is
applied to the signal transition. It causes an
ion to go from state 1 to 2. The ion may further
jump to state 3 if the energy hv; is supplied by
the cold reservoir. The cycle is finally com-
pleted when the ion returns from state 3 to state
1 while the energy kv, is communicated to the
hot reservoir. In this process, energy is ex-
tracted from the idler transition, that is from
the cold reservoir, so that it is refrigerated.
The scheme outlined here, however, requires
the signal transition to be absorptive. Other-
wise the first step, application of thi to the
signal transition, would not have been possible.
Thus the refrigeration scheme is possible if
n,/n, <1. Again, the limiting efficiency of the
refrigerator is that of a Carnot engine and it is
realized with n, - n,—~-0 or Tgjo—~+,

It seems probable at this time that generation
of microwaves through thermal excitation by
two temperatures will be possible experimen-
tally. Such a scheme should be very attractive
for high microwave signal frequencies. Refri-
geration experiments, on the other hand, as
applied to interacting nuclear and electronic spin
systems have been suggested by the theoretical
work of Overhauser.* A thermodynamical analy-
sis of the Overhauser effect has been given by
Brovetto and Cini® and Barker and Mencher.®

Finally, we should like to point out that the
possibility of treating masers as heat engines
sets a fundamental distinction between these and
parametric amplifiers. Three-level masers are
capable of operating with noise-like excitation in
all three transitions. Parametric amplification

requires some phase coherence, that is, mono-
chromatic excitation is necessary for at least
one of the three frequencies involved. This
statement excludes heat as the source of energy
for parametric amplification.

*This work is partially supported by the Signal Corps.
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GAMMA-RAY ACTIVATION OF CARBON™
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A direct measurement of photonuclear reaction
cross sections can be accomplished by the use of
the monochromatic capture gamma rays of the
T(p,y)He* reaction.

If the gamma-ray energy be varied by changing
the energy of the captured particle, the photo-
nuclear cross section can be determined as a
function of photon energy. The capture of pro-
tons in tritium produces a high-energy gamma
ray of (19.82 +$Ep)-Mev energy, where Ej is the
proton energy. This gamma ray has a smooth
yield curve with no resonances, but it is of
rather low intensity. Nevertheless, by using a
highly effective detector we have measured the
direct photoactivation of carbon by the C*2(y, n)C**
reaction in the photon energy range 20.2 to 21
Mev.

The tritium was absorbed in a thin layer of
zirconium evaporated on a silver backing! which
was water cooled. The thickness of the target
for 1-Mev protons was measured to be 70 kev by
observing the T(p,n) threshold and comparing
with very-thin-target differential curves.?

The carbon was reactor-grade graphite in the
form of an annular ring surrounding the tritium
target. The carbon subtended the angles from
90° to 102° with respect to the proton direction
which corresponds to a range of photon energies
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