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This note gives a brief account of a macro-
scopic hydrodynamic theory of liquid helium I
which can describe most of the experimental ob-
servations on the thermal and mechanical be-
havior of liquid helium below the X-point. The
theory evolves from a one-Quid concept of liquid
helium in which a long-range order exists in the
momentum space. The transfer of long-range
order (disorder) is then the superconductivity of
heat. By assuming that one is dealing with a
classical thermomechanical medium, it can be
mathematically proved that there is a momentum
transfer associated with the reversible energy
transfer even when the momentum of the fluid is
zero. This is a typical feature of the usual two-
Quid theory; indeed, a two-fluid model can be
constructed, in a purely mathematical manner,
out of the present one-fluid theory. The basic
equations, one governing the rate of change of
momentum and the other governing the rate of
change of the reversible heat flux vector, can
then be reduced to the ordinary equations of
Landau. There is, however, no longer any com-
pelling reason to believe that the motion of the
superfluid component must be irrotational. (See
Lee and Yang. ')

Accordingly, we propose to abandon the often-
used basic assumption that the superfluid com-
ponent of the flow is irrotational. (See Lifsic

and Halatnikov. ') We next include certain dissi-
pative terms in our equations of motion depend-
ent on the gradients of physical quantities, in
agreement with Lifsic and Halatnikov. Since the
equations of motion now contain the second-order
space derivatives of the superfluid component,
we need a boundary condition for the tangential
component of the superfluid velocity. Bearing in
mind the requirement of covariance with respect
to coordinate transformations, we propose the
following general form for the boundary condi-
tion:

ev
&jWV =f(q )q,s)T

where q is the tangential component of the differ-
ence between superfluid velocity and wall velocity,
and Bvs I/8N is the tangential component of the

7

normal derivative of the superfluid velocity.
Before a molecular theory can be developed, the
form of f(q ) must be determined by experiments.
For small velocities, we assume

f(q ) =n+J3P+ ...
From Andronikashvili's disk pile experiment,
we know that n must be negligibly small. Thus,
the simplest form for f (q ) is

f(q) =Pq

Vfith this simple assumption, we can derive the
following results for experiments involving sim-
ple geometry.

(A) For rotating bucket experiments, the
theory predicts uniform rotation of the super-
fluid component, but at a speed lower than that
of the normal component, because of the bound-
ary condition (1). The ratio of angular momen-
tum I. actually acquired by helium G to the ratio
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FIG. 1. Angular momentum of liquid helium II in a
rotating bucket.

I for ordinary fluids is given by
L/L =s+x (1-s),

(u/(u~ ——,
' [s/(1- s)']~', (4

where x is the fraction of normal fluid present,
z is the angular velocity of the bucket, and &u&

is related to the molecular parameter P by

(d~ = 4pQ

In this formula, a is the radius of the bucket.
(8) For isothermal flow through a tube (or

channel), the amount of Qow depends on the pres-
sure gradient I' in the following manner:

Mean velocity v =Ad'I'+ Bd~' I

where A and B are molecular parameters, and d
is the diameter of the tube (or width of the chan-
nel).

In Fig. 1, one set of experimental results of
Walmsley and Lane' is compared with Eq. (4).
There is only one other set of data at the same
temperature which is, however, not sufficiently
accurate to test the validity of (5). In Fig. 2, the
experimental results of Atkins4 are compared
with (6). One may notice that the theoretical and
experimental results agree for tubes of various
sizes.

Preliminary analyses also show agreement of
the theory with experimental results for fountain
effect and for damping experiments at finite am-
plitudes. ' These will be discussed in a more
complete paper. It also follows from the present
concepts that second sound should propagate
through rotating liquid helium II in essentially

FIG. 2. Velocity of Qow of liquid helium D through
tubes of various diameters. (I) d=4. 40x 10 2 cm (V
for short tube). (II) d = 3.03x10 2 cm Q for short tube).
(Ill) d = 0.816x 10 2 cm.

the same manner as in the nonrotating case —a
fact observed by Hall and Vinen. ' The detailed
examination of attenuation of second sound in
rotating helium is left for further investigation;
preliminary considerations also show general
agreement with their results.
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