forming us of some of their unpublished cross sections.

⁴L. Baggett, University of California Radiation Laboratory Report UCRL-8302 (unpublished). Also B. McCormick and L. Baggett, in 1958 Annual International Conference on High-Energy Physics at CERN, edited by B. Ferretti (CERN, Geneva, 1958).

⁵S. DeBenedetti (private communication).

⁶I. A. Pless, Phys. Rev. 104, 205 (1956).

⁷S. M. Korenchenko and V. G. Zinov, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1307 (1957) [translation: Soviet Phys. JETP 6, 1006 (1958)].

⁸Walker, Hushfar, and Shephard, Phys. Rev. 104, 526 (1956).

⁹A. R. Erwin and J. Kopp, Phys. Rev. 109, 1364 (1958).

¹⁰Heinberg, McClelland, Turkot, Woodward, Wilson, and Zipoy, Phys. Rev. 110, 1211 (1958); J. I. Vette, Phys. Rev. 111, 622 (1958); F. P. Dixon and R. L. Walker, Phys. Rev. Lett. 1, 4 (1958); see also reports by R. R. Wilson and R. L. Walker at the 1958 Annual International Conference on High-Energy Physics at CERN, edited by B. Ferretti (CERN, Geneva, 1958); Sellen, Cocconi, and Hart, Phys. Rev. 110, 779 $(1958)_{-}$

¹¹W. J. Willis, Ph. D. thesis, Yale University, 1958 (unpublished). Also Morris, Rahm, Rau, Thorndike, and Willis, Bull. Am. Phys. Soc. Ser. II, 3, 33 (1958). 12 A. R. Erwin (private communication).

^{, 13}S. J. Lindenbaum and R. M. Sternheimer, Phys. Rev. 109, 1723 (1958).

¹⁴The possibility of a $d_{3/2}$ resonance to explain the peak in the photoproduction cross section was expressed in a quantitative way by R. F. Peierls, Phys. Rev. Lett. 1, 174 (1958).

THEORY OF SPIN-ORBIT INTERACTION IN NUCLEAR FORCES*

Suraj N. Gupta Department of Physics, Wayne State University, Detroit, Michigan (Received December 19, 1958)

It has repeatedly been pointed out in recent $years^{1-4}$ that a spin-orbit interaction between two nucleons is necessary to explain the observed scattering of nucleons. From a theoretical point of view the existence of a spin-orbit interaction is not at all surprising, because it has been shown by Breit⁵ that in a relativistic treatment of the interaction of nucleons the spin-orbit interaction arises in a natural way. However, pion-theoretical calculations by Klein⁶ and several other authors⁷ show that the pion theory is unable to account for the large spin-orbit interaction, which is required to explain the experi-

mental results. It is, therefore, necessary to look for some other explanation of the spin-orbit interaction.

Recently we have predicted^{8,9} the existence of a hitherto unobserved neutral scalar meson, the ρ^0 meson, which is coupled strongly to the nucleons. Since the mass of the ρ^0 meson is considerably larger than the pion mass, it leads to a force of very short range between the nucleons. The second-order nuclear potential due to the ρ^0 meson is given by

$$V_{2}\left(\rho^{0}\right) = -\frac{g^{\prime 2}}{4\pi r} e^{-\lambda^{\prime} r} + \frac{g^{\prime 2}}{4\pi r} \frac{1}{2\kappa^{2}} \frac{d}{dr} \left(\frac{e^{-\lambda^{\prime} r}}{r}\right) \vec{\mathbf{L}} \cdot \vec{\mathbf{S}}, \quad (1)$$

,

where g' is the coupling constant for the interaction of ρ^0 mesons and nucleons, λ' and κ are related to the ρ^{0} -meson mass μ' and the nucleon mass M as $\lambda' = \mu' c / \hbar$ and $\kappa = M c / \hbar$, and we have used the Signell-Marshak definitions³ of \vec{L} and \vec{S} . The coefficient of $\vec{L} \cdot \vec{S}$ in (1) can be expressed as

$$V_{LS} = \frac{V^0}{x} \frac{d}{dx} \left(\frac{e^{-nx}}{x} \right), \tag{2}$$

with

$$V_{0} = \frac{g^{\prime 2}}{4\pi c\hbar} \frac{\lambda c\hbar}{2} \left(\frac{\lambda}{\kappa}\right)^{2}, \qquad (3)$$

where λ is related to the pion mass μ as $\lambda = \mu c/\hbar$, while $x = \lambda r$ and $n = \mu t/\mu$.

According to our earlier ideas, ⁸ the ρ^{0} -meson mass should be somewhat larger than twice the pion mass, and the coupling constant for the interaction of ρ^0 mesons and nucleons should have the same value as the coupling constant for pions and nucleons. Thus, we can take

$$n \approx 2, \quad g'^2/4\pi c\hbar \approx 14.$$
 (4)

We also have

$$\lambda/\kappa = 1/6.7, \quad \lambda c\hbar = \mu c^2 = 139.4 \text{ Mev}, \quad (5)$$

where we have taken the pion mass as $273m_e$. Substituting the above values in (2) and (3), we find

$$V_{LS} = \frac{V_0}{x} \frac{d}{dx} \left(\frac{e^{-2x}}{x} \right), \tag{6}$$

with

$$V_0 = 21.7$$
 Mev. (7)

It seems to us guite astonishing that not only (6) has exactly the same form as the latest phenomenological spin-orbit interaction of Signell, Zinn, and Marshak,⁴ but our theoretical value of V_0 is also remarkably close to the phenomenological value of $V_0 = 21$ Mev.

It is tempting to conclude that the ρ^0 meson provides a complete explanation of the spin-orbit interaction between two nucleons. The resulting interaction also seems to be in agreement with the requirements of the shell model of the heavier nuclei.¹⁰ It must, however, be noted that some objections have also been raised¹¹ against isotopic-spin-independent spin-orbit interactions, and at the present stage of our knowledge we cannot settle the problem of spin-orbit interaction with complete certainty. It is also possible that the ρ^0 meson is coupled less strongly to the nucleons than the pions, and that the spin-orbit interaction is partly due to the ρ^0 meson and partly due to pions.

^{*}Supported in part by the National Science Foundation. ¹K. M. Case and A. Pais, Phys. Rev. <u>80</u>, 203 (1950). ²J. L. Gammel and R. M. Thaler, Phys. Rev. <u>107</u>,

291, 1337 (1957).
³P. S. Signell and R. Marshak, Phys. Rev. <u>106</u>, 832 (1957); 109, 1229 (1958).

⁴Signell, Zinn, and Marshak, Phys. Rev. Lett. <u>1</u>, 416 (1958).

⁵G. Breit, Phys. Rev. <u>51</u>, 248, 778 (1937); <u>53</u>, 153 (1938).

⁶A. Klein, Phys. Rev. 90, 1101 (1953).

⁷For the latest work on this subject, see G. Breit, Phys. Rev. <u>111</u>, 652 (1958) and S. Otsuki, Progr. Theoret. Phys. (Japan) <u>20</u>, 171 (1958).

⁸S. N. Gupta, Phys. Rev. 111, 1436 (1958).

⁹S. N. Gupta, Phys. Rev. 111, 1698 (1958).

¹⁰J. P. Elliott and A. M. Lane, Phys. Rev. <u>96</u>, 1160 (1954).

¹¹H. Feshbach, Phys. Rev. <u>107</u>, 1626 (1957); A. M. Sessler and H. M. Foley, Phys. Rev. <u>110</u>, 995 (1958).

V-A FOUR-FERMION INTERACTION AND THE INTERMEDIATE CHARGED VECTOR MESON*

S. Oneda[†] and J. C. Pati University of Maryland, College Park, Maryland (Received December 22, 1958)

The universal V-A form of Fermi interaction seems to be compatible with the current experimental results.^{1,2} In order to forbid many unwanted reactions, it has been speculated that the weak Fermi interactions are realized through the interaction of a <u>charged</u> current, J_{α} , with itself by exchange of a heavy charged boson.¹ The simplest possibility is the introduction of a charged vector meson B_{α} (with mass m_B) which is coupled to the J_{α} with the coupling constant F:

$$F J_{\alpha} B_{\alpha} + \text{H.c.}$$
 (1)

The J_{α} may consist of the lepton currents, $\bar{e}\gamma_{\alpha}$ $\times (1+\gamma_5)\nu$ and $\overline{\mu}\gamma_{\alpha}(1+\gamma_5)\omega$, and of the strangeness conserving and nonconserving baryon currents. We deliberately denote the neutral counterpart of the muon as ω . First of all, it may be remarked that the B_{α} -meson must be heavier than the Kmeson.³ The case when the B_{α} -meson is extremely heavy may not be realistic and there may be little point in introducing it. One interesting theoretical evidence against a B_{α} -meson which is not unreasonably heavy has been pointed out. Namely, if we take the two-component theory of the neutrino $(\nu \equiv \omega)$ with lepton number conservation, the existence of the B_{α} would cause the $\mu - e + \gamma$ transition.⁴ It is, however, to be remembered that we could forbid this decay if we do not assume $\nu \equiv \omega$. For instance,⁵ one may interchange the lepton number of μ^+ and μ^- and at the same time change the neutrino accompanying μ to an antineutrino⁶ ($\omega \equiv \nu^{C}$). This possibility can hardly be differentiated from the usual theory by presently feasible experiments. In view of this situation, it may be worthwhile to investigate further the possible existence of a B_{α} meson. In the following, unless mentioned, we neglect electromagnetic corrections. For the $\pi \rightarrow \mu(e) + \nu$ and $K \rightarrow \mu(e) + \nu$ decays nothing would be changed except for the replacement of the usual Fermi coupling constant G by $\sqrt{2} F^2/m_B^2$. For the K_{e_3} and K_{μ_3} decays, however, the effect may be observable by future experiments. For instance, the general form of the matrix element of the K_{e3} mode is given (neglecting the electron mass) by

$$M F^2 \overline{e}(k \cdot \gamma) (1 + \gamma_5) \nu (A - 2m_K E_{\pi})^{-1} \phi_K(k) \phi_{\pi}(k - p), (2)$$

where $A = m_B^2 - m_K^2 - m_\pi^2$. k_α and $k_\alpha - p_\alpha$ denote the energy-momentum four-vector of the Kmeson and the pion, respectively. In principle, the effective coupling parameter M may depend on the total pion energy E_π . As M represents the contribution of baryon-antibaryon loops, this dependence is probably rather weak.⁷ The denominator of (2) expresses the propagator of the B_α meson. If the mass of the B_α -meson is not far removed from the K-meson mass, this denominator will behave as $-2m_K E_\pi [A=0$ if $m_B = (m_K^2 + m_\pi^2)^{1/2}]$. In this case the effect may be observ-