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The relativistic O(4,2) dynamics is applied in its simplified version to meson decays
with spin parity 2 —17+07, 9¥=07+07, 17=07+0" in good agreement with experi-

ment.

Strong decay rates of higher spin mesons
have been analyzed in the SU(3) framework
with an assumed spin-dependent phase space
(or transmission barrier) factor, without's?
or with® an intrinsic symmetry breaking. The
decay of spin-:Z+ mesons has also been calcu-
lated recently in the quark-rearrangement mod-
el.* Within the framework of noncompact dy-
namical groups the question of meson decays
has been considered in the SL(2,C)® and in
SL(6, C)® formalisms. In the former case the
theory leads to some unobserved selection rules
and the group is not large enough to account
for all observed decays, unless more unusu-
al towers of representations are introduced.

In the second case the straightforward appli-
cation of the theory forbids all three-meson
vertices.®

From the considerations of form factors and
spectra, the infinite-dimensional representa-
tions of the group O(4, 2) ~SU(2, 2) have been
recently introduced’ to label the baryon levels
with the same intrinsic quantum numbers. The
essential ingredient of this latter theory is the
occurrence of a mixing effect [that is also es-
sential in the transitions between hydrogenic
levels, also described® within the framework
of O(4, 2)] that cannot occur in the SL(2, C) the-
ory. This effect is crucial in the behavior of
scalar and electromagnetic form factors.

In this paper we generalize the technique that
was used in the calculation of baryon decays
in O(3, 1) dynamics® to O(4, 2) and apply it to
strong meson decays. The procedure is as
follows: In the rest frame the mesons are as-
signed to two (parity-doubling) simplest rep-
resentations of O(4, 2) with definite charge-
conjugation and G-parity properties. The group
SU(3) of the internal quantum numbers is tak-
en, in the rest frame, simply as a direct pro-
duct® which, however, in an arbitrary frame

introduces a definite symmetry breaking. The
states are consequently labeled by

G
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where n is the principal quantum number in
0(4,2), the other labels being the usual ones.
On this Hilbert space one defines the genera-
tors of the pure Lorentz transformations M
(boosters), and for electromagnetic interac-
tions, the unique vector I' , and other tensors

I ,,, etc. The states of momentum p are de-
fined by |aja;p)=e=~t&*M|q;qa) with tanhé=p/E.
In addition, the interaction can be pictured

as a mixing effect

la;ayp) =exp(z'9aaT) lasa;p), (2)

where T is a scalar operator with respect to
the rotation subgroup of O(4, 2), and hence does
not mix the J and J, =m values; it mixes the

n values (as in the H atom). We also take, as
far as simple decay processes are concerned,
the minimal symmetry breaking defined by the
fact that T does not mix the internal quantum
numbers a; i.e., T is an operator in O(4, 2)
alone.

Without loss of generality, we can choose the
boosters to be M; =L;5. Then there is still
some freedom in the choice of 7. In most of
the meson decays, however, T will not be an
important factor because of the small momen-
tum transfer involved, and we shall take the
mixing angle in (2) to be zero, except in the
decays 2" -1~ +0~ where for kinematical rea-
sons the first-order mixing is taken with T
=L,., the lowest order being forbidden.

The transition probability amplitude for the
decay is then given by

6T
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where the two-particle states have been defined as the direct product. If we take out the boosting
operations in the rest frame of the initial particle [note that the boosters are independent of the SU(3)
quantum numbers], and insert intermediate states, we obtain

—it'M,

3In'J’m’)(;71;7277!e

0T — _ — == = — - - En
A={ndm;a le’ Inpma’)® nmma”)pn,mle i M3]n”J”m”). (4)

Here the intermediate states have been used in the O(3) ® O(3) diagonalization of the O(4) subgroup.
The matrix elements occurring in the last equation are given by'!

=My, 5 g m+m’, o, 3n’-1) 20’ -1) J’
by le T =0 D) @7 +1)° <‘§'( m=n,+n;) 3(m+n;-n,) —m’)
3(m +1) 2(m+1)
ny+5m+1),n," +i(m +1)( =9V +im+1),n %(m+1)(-£)’ (5)

where the V functions are matrix elements of suitable finite O(2, 1) transformations and occur in all
transition-probability calculations:

sm +1)
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(for n,<n,’, interchange n, and »,’). Finally, in the O(3)® O(3) diagonalization the O(4, 2) states are
given by

-1 .
nygm) =y Lng + 1 1) Iny Luy + Im 1) 1] 2xa, T2 ¥ T TRabmy T2 g0 0,
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(6)

To evaluate the first matrix element in Eq. (4), one has, strictly speaking, to define precisely
two-particle states, for example, by the reduction of the direct product. In the present calculation
we simply represent each state by the corresponding creation and annihilation operators, take their
direct products for both states, and treat these creation operators for both particles as indistinguish-
able. This is the simplified version referred to in the Abstract. We illustrate one case: 27 ~0"+0".

From (6), the initial 27 state is given by

12+)=(1/2V6)(a,T 20,72 +4a,Ta, 0,10, T +a,T25,72)0)

and from (4), three intermediate states contribute

1 -3 sinh?4¢”
cosh?Lz V6 cosh*L¢”

—Ms(a T2p,72 +4a,Ta,T0, 10,1 +a,72,72] 310)® [27%)

-3 sinh?}£”

) l @t V24 sinhi£’ V24 sinhit”
V6 cosh*i¢” cosh21 v2

cosh®1¢’  cosh33&”

+12H® 10)—= +a2Tb T))<§Z>*[—I(a.‘,Tb T+a17b )}

Summing these terms, we have

21 4/ 21 ¢m ’ n”
At ~0"+07)= 3[ sinh?4¢ sinh?3¢ /] 8 sinh3£’sinhit

" V6 |cosh*l¢’ coshi §’+cosh2§§’cosh‘“§’ V6 cosh®it’ cosh®¢”"
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Table I. Comparison between calculations and experiment.

SU(3) with Quarx model c
Decay mode a 0(L,2) Experiment
phase space and phase space
2+—v 0 +0
d d d
f—2T 100 100 100 10t W
f—<KK 2.l 0 2.5 2,3*0,6
£ MM 0.2 L.2 sin'x 0.828 small
1T 1,7 0 2,95 {12%9
1=K K 31 53 15,9 »51%10
2, ;.
fr--=nmmn 9 67 co$ °</Sin2°< 3.95 not seen
iy K X 6 0 2,93 3.06%1
A,~NT 1 9l SireC 16,1 2.3%1.5
K, KT L2 42 5L.9 L85
.2
Ky==Km 1L 38.L Sine& 1.1 1.9%2.8
17— 0 4 0~
d d d
Q'—>2 iC _]_._é_O_ £6_9 .1;629 160
¢ 3.3 3.1 1.55 1.940.5
> KK 2.2 2.0 1.32 1.6%0.4
Kt = KT L2 59,5 38,1 L9.8%1,7
2174 o7
e L (5 15 1547
Ky— KT 23.5 37.8 26,5 33%3
Ky—= K@ 842 11,1 1.73 8.2%L
KV—' Ko 3 2.9 0,52 0.92% 1.5
fr— KR4 KK 18 31.8 12,5 <3h*10
4See Ref. 2. CFrom A. Rosenfeld et al., Rev. Mod. Phys. 39, 1 (1967).
PSee Ref. 4. Values underlined are inputs.

Finally, we have to multiply the square of
the invariant amplitude (7) by the invariant phase
space P/Minitial and multiply it by the square
of the coupling constant. The spin dependence
of the amplitude or transmission-barrier fac-

920

tor are all given by the theory. For infinite-
component theories with a tower of particles
of different masses, the coupling constant G
cannot be just a constant but must be a matrix.!?
We see this simply by the fact that for the elec-
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tromagnetic coupling, the charge is the diag-
onal matrix element of I, which is proportion-
al to n, so that the ‘“coupling constant” must

be e/n in order for all excited states to have
the same charge e. Similarly, we expect that
the scalar coupling must be done with a matrix
coupling constant. This remaining ambiguity
will be determined by the actual mass spectrum
and gauge principles. At this stage we have
taken the following mass factors in the coupling
constant from dimensional arguments that give
the best agreement with the experimental num-
bers:

r=[G*/(2J+ 1)](CG)2(Mi2/mlm2)Pf|A E.

Here G is now dimensionless, A the invariant
amplitude and (CG) the SU(3) Clebsch-Gordan
coefficients. The results, together with the
previous calculations and experimental num-
bers, are shown in Table I. Only one input
is used in each class of decays. In the future,
if the mixing angle 6 is known, all the three
classes can be compared with a single input.
In fact, the purpose of using an irreducible
representation of a noncompact group is even-
tually to relate all higher spin resonance de-
cays with each other.
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