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A method is presented for calculating two-body shell-model interaction matrix ele-
ments from scattering phase shifts, which applies to shifts of any magnitude and to ten-
sor coupling. It is assumed that the average (shell-model) potential, expressed in two-
nucleon relative coordinates, is slowly varying within the range of the free two-nucleon
interaction. Examples are given for the p shell and compared with the results of other
methods, some of which include Pauli corrections.

The idea that interactions between nucleons
in a nuclear system might be expressed direct-
ly in terms of free two-nucleon scattering am-
plitudes (or phase shifts), thus avoiding the
need for explicit information on the form of
the interaction, was used in the original work
of Brueckner, Levinson, and Mahmoud' on the
nuclear-matter problem, and was discussed
by others. ' The approach was more or less
abandoned when it was found that the effects
of the nuclear medium, on account of the Pau-
li principle and the binding of the nucleons,
might introduce large corrections which could
be calculated only by using explicitly the two-
nucleon inter action. '

For calculating spectra of finite nuclei, it
is possible that some of these difficulties are
less serious. For "valence" nucleons, the Pau-
li principle has less effect, and some of the
binding corrections are in the effective single-
particle potential. Thus it might be possible
to obtain interaction energies for nuclear spec-
tra, to a good first approximation, from free-
scattering phase shifts, although this approach
might not be equally good for total binding en-
ergies.

In the harmonic-oscillator shell model, the
interaction energy is calculated in terms of
a set of matrix elements (n'l'sj lt Intsj ) of a

reaction matrix or effective interaction between
harmonic-oscillator states for relative motion
of two nucleons. Kallio4 has discussed an ap-
proximation which gives diagonal (n', l' =n, t)
reaction matrix elements in terms of the free
two-nucleon phase shifts 5i(E), evaluated for
certain fixed values of the (free) relative ener-
gy, E. More recently, Elliott, Mavromatis, and
Sanderson' have reported a somewhat differ-
ent method for calculating the reaction matrix
elements, which require energy averages of
tan5f(E). Both approaches are based on pertur-
bation notions and are restricted to small phase
shifts'. Kallio's by higher order corrections in
his long-range interaction v~, and that of Elliott,
Mavromatis, and Sanderson by explicit depen-
dence on the assumption that the entire interac-
tion is weak enough for perturbation methods.

In this paper we present another method for
calculating the interaction energy for relative
motion of a nucleon pair in a nucleus directly
from two-nucleon phase shifts. The method
is not restricted to small phase shifts and can
therefore be applied to all partial waves, in-
cluding tensor -coupled waves. The two-nucle-
on interaction is not treated as a perturbation;
it is assumed to be strong and short ranged,
as are the current phenomenological potentials,
e.g. , the Hamada-Johnston potential, e but its
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explicit form is not needed. The restriction
on the average potential which defines the un-
perturbed (shell-model) states of relative mo-
tion is that it be essentially constant within
the range of the two-nucleon interaction. This
is the case for the harmonic-oscillator poten-
tial; in fact, it is the flatness of the potential
near the origin which allows Kallio to make
his asymptotic approximation. This property
also obtains for the square-well and %oods-
Saxon potentials, to which the present method
can also be applied.

To the extent that we can ignore the Pauli
principle and self -consistent binding effects,
the calculation of diagonal reaction matrix ele-
ments is equivalent to finding the eigenvalue
shifts

hE .=-E . E'=(n—lsj ltlnlsj)
nlsj nlsj nl

of the radial Schrodinger equation in relative
coordinates,

,+, U(r)+V(r) E, -. u .(r)=0, . (2)
1 d2 l(l+1)

M dr2 Mr2 nls j nlsj

where E is the "unperturbed" eigenvalue, with

no two-nucleon interaction, i.e., V(r) =0. M
is the nucleon mass.

We assume that V(r) is of short range com-
pared with the average potential U(r), and that
U(r) is almost constant within the range of V(r)
(we take the constant to be zero). Consider
the following three domains of the radius r:
A, within the range of V(r); B, outside the range
of V(r), but within the region of constant U(r);
and C, outside A and B. The boundaries are
not unique. Now, to a good approximation a
given solution u„&s (r) of (2.) will coincide with

some solution vtsj (E, r) of the free scattering
nlsj

equation [Eq. (2) with U(r) =0], in domains A

and B. In domain B, however, this scattering
solution is of the form

v .(E, r) =Z, (kr) ~rj (kr)-rn (kr) tanb (3)
lsj ' lsj l l l

with energy E =k2/M still to be determined.
In domains B and C, untsj(r) =ant(E, r), where

ant is a solution to Eq. (2) with V(r) = 0, at the
same energy E, which goes to zero at large
distances. The eigenvalue is found by match-
ing ZE (r) and w t(En, r) at some point, r„with-lsj
in the middle domain, B. Note that these two
functions do not depend explicitly on V(r), since
they are both determined outside its range.
If the two functions are matched at r =r„ they

will still be quite similar for any other point
in A or B, since this is the region of U(r) =0.
Therefore the eigenvalue is quite insensitive
to the value of ro, which may even be taken well
within the range of V(r), even though the matched
functions are not the solutions of (2) at such
a point.

Let us now consider the harmonic-oscillator
potential, U(r) =-,'5&ex', x =r/b, with b = (M'/
Me)"'. We need the solutions for arbitrary
E which we write following ¹iblack and Nigam'
(not normed).

l+1 -l 2
(E,r)=(x s (a, x)+B x t (a, x)}exp(——,'x )

with

s (a, x) = M(-,' (a + t ) + —,', —,'+ l, x'),

t, (a, x) =M( (a-t)+-,', —,'-t, x')

and a = —Entsj/h(u, where M(a, b, z) is the con-
fluent hyper geometric function, 8 and

I'(-,' (a-l) +-,') I'(-,'+ I)
I'(-,'(a+ I) + —,') I"(2 -I) '

Note that these are not the Laguerre solutions,
regular at the origin, unless a = -(2n+l+-,').
If we choose the matching radius to be small,
ro «b, then sl -tl —l. Using the small-radius
forms of jt and nt in (3), we obtain the match-
ing condition

8 = (2l+ 1)!!(2l-1)!!(kb) tanb (k)
-(2l+ 1)

l l

which must be solved for k (or Entsj = k'/M).
The case of tensor-coupled partial waves can

be treated in much the same way. One obtains
two simultaneous matching equations similar
to (5), for l =7+ 1, in which tanbt is replaced
by an expression containing the eigenphase shifts
~„5,and mixing parameter e, as well as an
unknown parameter, n, which gives the rela-
tive amplitudes of the two eigensolutions of the
scattering problem in the desired solution of
the tensor generalization of Eq (2). Thi.s pa-
rameter n is not the same as e, which gives
the relative amplitudes of the two partial waves
in each of the scattering eigensolutions. The
coupled equations are solved for k and n.

For the case of small phase shifts, Eqs. (3)-
(5) lead to a perturbation formula

AE . = -Scud tan5
nlsj nl l
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with

2I'(n+ l+ —') 2
2l+ 1

nl nn t kh

kb = (4n+ 2l+2)'", (6)

which gives Kallio's form~ for l =0.
As an example, we have calculated AEQ)g7

appropriate to nuclei in the first P shell. These
are listed in the first column of Table I, for
Scu =15 MeV. The P and D states are calculat-
ed from (6) with tandy = 6i, and the S states from
(5). There is a negligible effect from the mix-
ing of 6, and 6, in 'S,. This does not mean that
the tensor effects are weak; they already ap-
pear in the eigenphase shift. The results are
given for ~0=0; the results for so= 1.64 F dif-
fer by ~10%.

We have used the phase shifts given by Ha-
mada and Johnston' so that we can compare
our results with those of other reaction matrix
calculations using this or similar potentials.
In Table I we have listed 4E„~~ calculated by
McManus and Grillot and by Kim, "using dif-
ferent numerical methods to solve (2) direct-
ly. It is to these results that the present meth-
od should be a good approximation. The other
columns include results by Hull and Shakin, "
Becker and MacKellar, ' and Kuo and Brown, "
who have used reaction-matrix methods which
take approximate account of the Pauli princi-
ple and of binding.

We note the rather close agreement of our
results with those of McManus and Grillot.
Kim's results differ from these for 'S, states,
which may result from poor convergence of

Table I. &E«~& (in MeV) for Op shell.

State

Present
Theory

'54) = 15

NcNanus-
Grillot
Fib) = 14 ~ 5

Kim
15+ 27

Hull-
Shakin

'5Q) = 15

Becker-
MacKellar
+g = 15 ~ 5

Kuo-
Brovn
Tl(d ~ 14

1
S (os)

1
S0 (ls)

-8.55

-4.8

-8.1

-4.9

-8.31

-4.03

-9.17

-8.00

7 ~ 53

-5.16

-5.61

-4.53

3
P0 -1.59 -2.0 -1.75 -1.97 -1.65

3p
1 +1.73 1.8 3.32 2.51 l.99

P
2

-1.46 -1.07 -l.28 -0.65

1
2

-0.56 -0.6 -0.64 -0.70

3
S (Os)

3s (1)

-16.1

-8.25

-15.8

-8.7

-8.96

-3.80

-12.60

-9.98

-9.73

-8.44

1.53 1.6 6.23 2.20 1.91

3
Dl 1.86 2.1 1.67

D
2

2 ~ 35 -2.7 -2.49 -2.89

D3
-0.56 0.10 -0.074
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Table II. &E (in MeV) for P states (~& = 8.5 MeV).

Sp0 Sp 3p

Present Present Present
theory Elliott theory Elliott theory Elliott

0 —0.92 —1.36
1 —0.93 —1.25
2 —0.70 —0.82

0.67
1.03
1.31

0.88
1.16
1.45

—0.44
—0.88
-1.20

—0.49
—0.89
—1.17

his matrix method, for tensor coupling. The
present method agrees with reaction-matrix
methods about as well as they agree with each
other. To correct for the omission of Pauli
and binding effects, knowledge of the wave func-
tion, and therefore, of the two-nucleon inter-
action, would be necessary. It seems likely
that the present method is accurate in the treat-
ment of the tensor force, which has caused
some trouble in reaction-matrix calculations.

Lastly, we compare our calculation of AE+)pj
for the states 'P, »with those of Elliott, Mav-
romatis, and Sanderson (Table II of Ref. 5),
both for hv =8.5 MeV, in Table II. The results
are qualitatively similar, which suggests that
there may be a weak pseudopotential, which
satisfies the requirements of the theory of El-
liott, Mavromatis, and Sanderson, and which
approximately gives the low-energy I' phase
shifts in the Born approximation.

The author is grateful to H. McManus for un-
published results. '
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In my recent paper, ' I made a suggestion
that Dirac's numerical relation

2

, =1.24x10"=t
yM' pres. '

where e is the elementary charge, y the gra-
vitational constant, M the mass of a nucleon,
and where tpres is the present age of the uni-
verse expressed in elementary time units X/c,
may be interpreted by the assumption that, while

y remains constant, e' increases proportion-
ally to t. I have suggested that this possibili-
ty may be tested by observing the value of the
fine structure constant a =2me'/hc in the dis-
tant galaxies. When making this suggestion,
I was unaware that the test had already been

made by Bahcall, Sargent, and Schmidt in their
studies of the absorption spectrum of 3C-191.'
At the end of that paper they write the follow-
ing:

"We find that: o(z =1.95)/o(z =0) =0.94, 0.97,
and 1.01, respectively, for the Si II lines near
~1260 and X1527 and the Si IV lines near 11394.
We conclude that a(z =1.95)/o. (s =0) =0.98+0.05."

This indicates that although all lines of the
spectrum are lengthened by a factor 2.945+ 0.001,
the separation between the fine-structure com-
ponents of three doublets remains constant with-
in 5%. The interpretation of this result is,
however, somewhat uncertain due to the fact
that there is still no general agreement con-
cerning the nature of the celestial object in
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