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Hamilton and co-workers' have made exten-
sive use of partial-wave dispersion relations
in the s (square of the total energy W in the
c.m. system) plane in analyzing vN scattering
to obtain a number of interesting results. We
have performed similar calculations for the
I = —,', J= —,

' partial waves in the lV plane and found
some striking features which reflect on a va-
riety of questions.

The partial-wave dispersion relation used
by Hamilton is

f(s) =P(s)+—,ds'1 Im f(s')
1T(m+p)ss

1 (m P) Im f(s')
+ — ds', + a(s).

7T Q 8 -8

The term P(s) denotes the contribution of nu-
cleon exchange to the short cut, (m —p, '/m)'

s m + 2p, , and the direct, nucleon pole a,t
s =m for the P» amplitude. The first integral
is over the unitarity cut whereas the second
integral is over an unphysical region and must
be computed from crossing symmetry. The
lower limit on the latter integral is 0 and not
-~ because the square-root cut in s which one
encounters in vN scattering when working in
the s plane is not easily taken into account.
The term b, (s), called the discrepancy, accounts
for the cut from —~ to 0 (including effects of
the square-root cut) and the circular cut of ra-
dius m -p, centered at s =0 which is due en-
tirely to the t channel (~m -NN ).

The procedure is to evaluate f and the first
three terms on the right-hand side of (1) from
phase shifts, known masses, and coupling con-
stants and thus determine A(s) at low energy.
The conclusion' from the S-wave dispersion
relations was that h(s) could be accounted for
by a faraway contribution (almost constant) plus
a rapidly varying part due to the J=1,I=1 and
the (large) J =O, I=O mm -NN terms dominated
by the p resonance and a strongly attractive
S-wave m7t state "0," respectively.

We have done similar calculations in the 5'
plane (which for a given J couples the states
I =J+ 2) and find some striking features in the
I= 2, J = 2 amplitude. The partial-wave disper-

sion relations in the W plane for the I=&,J= ~

amplitude are [using the relation f&(W) = —fP(—W)]'

f (W) =B (W)

1 ~ Imf (W') Imf (W')
+—,—, dw, (2)

$ P
v i . i TV' —O' W'+8'

g (w)=B (w)

1 i ~ Imf (W') Imf (W')
+ —

~ --, dw, (3)
S

W' —W 8"+ W

where B contains the generalized potential terms
arising from the unphysical cuts plus the direct
nucleon pole which appears in both the S- and
P-wave relations (2) and (3).

The amplitudes are defined by

f.= [exp(2i6. )-1]/2ip. , i =S, P,
2 2 2'

where, as discussed by Frautschi and Walecka, 4

the appropriate kinematical factor is

p (w) =(&+m)(u/w),

p (w)=(~-m)(a/w),

with ~ the energy of the nucleon.
We can now compute the potential terms in

8 directly from known u- and t-channel reac-
tions without complications due to square-root
cuts. We assume initially that this can be done
approximately by considering p, N, and N*(1238)
exchange in the crossed channels as had been
done in previous N/D calculations. ' ' Our dis-
crepancy, b, f(W), is defined as the quantity which
must be added to this approximate potential
term in order to make (2) and (3) valid.

We have evaluated the integrals in (2) and
(3) up to pion laboratory kinetic energies, @&,
of 1 BeV using recent complex phase-shift anal-
yses which extend up to this energy. However,
we find that although the integrals are well con-
vergent, the contribution above 1 BeV can be
larger than that up to 1 BeV. A crude estimate
of the error involved in neglecting the remain-
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ing parts of the integrals is indicated in Tables
I and II. The uncomputed part of the integral
clearly cannot contribute much to the variation
in h(W) over this energy range and in fact does
not contribute much to the magnitude of b, (W).
The integrals are computed by using the phase
shifts determined by Hoper' up to ~i —-350 MeV
and then using phase shifts taken from Bareyre
et al.' up to 1 BeV. The contribution from the

range 350-1000 MeV is generally larger than
the 0- to 350-MeV contribution in both S- and
P-wave scattering.

The results of the calculations are summa-
rized in Tables I and II for the S» and P11 par-
tial waves, respectively. We would like to em-
phasize the following points:

(I) The conventional (N, N*, and p) potential
terms are obviously inadequate to explain the
phase shifts.

(2) By working in the Wplane we pick up a
contribution to the S» potential term from the
direct nucleon pole (at W= —m). This exactly
known contribution is larger in magnitude than

the p, N, and N* exchange terms. Thus, a
simple modification (e.g. , a suppression of
the u-channel forces) will not explain I),~11
(On the other hand, the u-channel forces are
comparable in magnitude with b,~ .) It would

11
seem that an investigation of the exchange po-
tentials in terms of Regge trajectories would
be profitable.

(3) Following Hamilton et al. ,' we fit the en-
ergy variation of 6S by introducing an I= 0, J = 0
t-channel potential term P dominated by an
k=0, I=0 7tv resonance "0." We set the mass
of the 0 equal to 350 MeV and adjust the over-
all strength g &&g to get an excellent fit

gNN gem
to the s dependence of ES (as seen in the last
column of Table I). This determines the term
B~ for the P wave and as seen in Table II this
large, rapidly varying term would make the
P-wave discrepancy much worse. On the oth-
er hand, if we use the value g ~&-1.7 deter-
mined by Scotti and Wong" in their analysis
of NN scattering, and estimate g „by assum-
ing a 100-MeV width for the g, we obtain terms

Table I. S&& fit to the dispersion relation [Kq. (2)). IS and IP refer to the integrals over the Si~ and Pi~ unitarity
cuts up to 1 BeV, respectively; the numbers shown in parentheses are the contributions to the integrals between 1
and 2 BeV assuming that the unitarity limit is maintained in this interval. B~, 8p, and B~+ are the contributions
to the potential term from the nucleon, P meson, and%*(1238 MeV) resonance. B is the sum of these contribu
tions and & is the discrepancy, computed from Ref =B +&+IS Ip where I-g is a principal-value integral. The po-
tential terms are those used by Ball and Wong [Ref. (6)]; in their notation the coupling constants are g /4~= 14.6,
y33=0.06, y~= —1, andy&= —0.27. Bg is the possible contribution from anl =0, T=O ~7t resonance (at 350 MeV)
where the over-all coupling gaN~go-~~ has been adjusted to fit the energy variation in &S which then fixes the con-
tribution of B& to the P~i potential term shown in Table II.

W (MeV) Re fS IS IP

B 8
P

Direct Exchange Electric Magnetic
S&& cr

7.72 3.8
8.30 100
8.58 150
8.86 200
9.38 300

0.104
0.078
0.073
0,070
0.068

O. 041 (0.030)
0.038 (0.033)
o.o39 {o.o35)
0.042 (0.037)
0.051 (O.041)

0.105 (0.072)
0.102 (0.070)
0.101(O.069)
o.o99 (o.o68)
0.097 (O.067)

—1.52
—1.46
-1.43
-1.41
—1.36

0.589
0.602
0.607
0.612
0.619

O. 105
0.152
0.172
0.189
0.217

—0.0002
—0.007
-0.013
-0.019
—0.033

—0.517
—0.530
-0.535
-0.540
-0.546

—1.34
—1.24
—1.20
-1.17
—1.11

1.51 0.51
1.38 0.38
1.34 0.33
1.29 0.30
1.23 0.24

Table II. P&i fit to the dispersion relation [Eq. (3)). The notation is the same as in Table I. & is computed from
the relation Ref =B +&+Ip-Ig where I~ is a principal-value integral.

W (MeV) Ref

B B
P

Direct Exchange Electric Magnetic B

7.72
8.30
8.58
8.86
9.38

3.8 —9.05 0.006 {0.008) 0.780 (0.256)
100 -2.99 0.006 {0.008) 0.859 (0.285)
150 —0.978 0.005 (0.008) 1.04 (0.300)
200 1.00 0.005 (0.008) 1.53 (0.318)
300 3.88 0.004 (0.008) 2.01 (0.355)

—21.4
-13.7
—11.6
—10.3
—8.18

2.74
1.87
1.65
1.47
1.25

1.91
2.01
2.02
2.02
2.00

4.16
4.21
4.19
4.16
4.07

8.58 —3.98 —5.85 9.23
8.38 2.81 -5.66 5.00
8.33 4.56 —6.58 3.84
8.31 5.80 —6.33 3.00
8.31 7.45 —5.58 1.99
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B~(W) which are an order of magnitude small-
er than those given in Tables I and II. We con-
clude that the 0 does not contribute significant-
ly to mN scattering in J = a partial waves. (How-
ever, it should be important in higher partial
waves. )

(4) We have seen that our knowledge of the
potential terms 8 (at least for the I= —,",J=-,'
states) is quite poor. Furthermore, the amount
of error introduced in the S-wave dispersion
relation due to a lack of knowledge of the phase
shifts above 1 BeV is potentially large enough
to make this dispersion relation unreliable as
a test (in performing phase-shift analyses) for
choosing between various sets of mN phase shifts
above 300 MeV.

(5) Previous (single-channel) N/D calcula-
tions' ' have tried to determine the nucleon
as a ~N bound state. Taking the potential terms
BN exchange, BN+, and Bp as input, a cutoff
was adjusted to give a bound state at the posi-
tion of the nucleon. Not only are the calculat-
ed phase shifts completely wrong, but the cal-
culated residue gave g'/4n ~ 26 (as compared
with the correct value 14.6) and the bound state
was produced over a quite limited range of val-
ues of the cutoff. We have investigated whether
improved potential terms would influence this
situation: We used simple expressions to ap-
proximate the 6's and added these to the poten-
tial terms BN exchange, BN~, and 8&. This
new B was used as input into the N/D equations
and the cutoff adjusted to produce the nucleon
as a bound state. A bound state was easily pro-
duced over a wide range of values of the cutoff
and furthermore we obtained residues at the
position of the nucleon giving values of g'/4v
as small as 19 when inelastic effects were in-
cluded by using the Frye-Warnock equations.
The calculated phase shifts were still wrong.
Clearly, a two-channel calculation is needed to
obtain both the nucleon as a bound state and the
Roper resonance. "

(6) Current-algebra" calculations for the S-
wave mN scattering lengths have been in excel-
lent agreement with experiment. Sakurai" has
shown that the current-algebra predictions can
be obtained by the p-dominance model. We see
from Table I that the potential term for p ex-
change is indeed very nearly equal to the real
part of the amplitude at threshold. However,

B& has the wrong energy dependence to explain

the S» effective range. The assumption of p
dominance is not adequate to explain the low-
energy S» phase shifts.

In conclusion, we note that the procedure of
Hamilton et al. , in using partial-wave disper-
sion relations together with experimentally de-
termined phase shifts, is indeed a powerful tech-
nique in obtaining information about the nature
of the potential terms. This approach is clear-
ly applicable to a variety of problems.
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