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PRESSURE DEPENDENCE OF ITINERANT ANTIFERROMAGNETISM IN CHROMIUM

D. B. McWhan and T. M. Rice
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received 9 August 1967)

The Néel temperature of Cr is found to vary exponentially with volume, which is in
support of a two-band model of itinerant antiferromagnetism. The temperature depen-
dence of the magnetic contribution to the electrical resistivity can be explained by tak-
ing into account only the variation in the number of effective carriers from the introduc-
tion of a band gap (24) due to the magnetic ordering. The ratio AO/kTN is estimated at

2.3 at P =26 kbar.

The electrical resistance of chromium has
been measured from 4.2 or 77 to 298°K at dif-
ferent pressures up to 82 kbar. The volume
dependence of the Néel temperature (Fig. 1)
shows strong curvature in marked contrast
to the magnetic ordering temperatures of Ni,*
Fe,? Invar,? and the rare-earth metals® which
are linear over the same volume change. These
results and the magnetic contribution to the
resistivity are interpreted using the itinerant
two-band model of antiferromagnetism due to
Lomer? and Overhauser.® This model has had
considerable success in interpreting many prop-
erties of Cr.%"

Three samples of single-crystal chromium
(Battelle Iochrome) were used with samples
2 and 3 being from the same ingot. The high-
pressure measurements were made in a gir-
dle die using AgCl as the pressure-transmit-
ting medium; the apparatus has been described
elsewhere.®® The pressure calibration is rel-
ative to the transitions in a bismuth wire mount-
ed in the cell and assumes a linear relation
between applied load and pressure with fixed
points at the origin, 25.4 kbar (Bi I—II), and
80 kbar (Bi III-V). The error in P is =3%.

The temperature was measured with a thermo-
couple mounted on the girdle, and in addition
for sample 3 a thermocouple was put in the
cell. The temperature of the girdle lags behind
the sample, and a 2°K correction was applied

to the data for samples 1 and 2. With sample

1 there were large temperature gradients in

the apparatus and the uncertainty in 77 is shown
in Fig. 1. A series of isobars of the resistance,
measured by a four-lead method, were made.
The pressure was increased near room tem-
perature where AgCl has a low yield strength.

There was a negligible change in T and the
resistance anomaly observed at 1 atm before
and after the pressure experiment, and this
suggests that the lack of true hydrostatic con-
ditions does not affect the validity of the exper-
iments. The resistivity ratios before and af-
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ter were the following: R,g/R, ,=535 (1) and
275 (3) (before) and 180 (1), 140 (2), and 165
(3) (after). The pressure cycle produced a
3-7% permanent elongation of the samples.
Figure 2 shows the curves of R/R(1 atm, 298).
vs T for samples 2 and 3 and demonstrates
the reproducibility of the experiments. In Fig.
1 the volume change was calculated using the
one-parameter Birch equation® with a bulk mod-
ulus (B,) of 1620 kbar.*

The data of Fig. 1 are fitted empirically by
the equation
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FIG. 1. Volume dependence of the Néel temperature

of chromium. Vertical bars, sample 1; crosses, sam-
ple 2; and solid circles, sample 3.
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FIG. 2. Resistance versus temperature for sample 2
(crosses) and sample 3 (solid circles). From the top,
the pressures are 26.5, 45.7, and 64.9 kbar for sample
2 and 26.3, 45.9, and 65.9 for sample 3. The dashed
curve is the extrapolated paramagnetic resistance (Ry).
The inset gives AR/R =(Ra—Rp)/Ra vs T. The solid
curve is calculated using Eqgs. (5) and (6) with (0g5/
0p)7=0=0.3 and A9/kTN=2.3. Crosses and solid tri-
angles: sample 2 at 26.5 and 45.7 kbar, respectively;
solid circles: sample 3 at 45.9 kbar; plus signs: sam-
ple 1 at 45.7 kbar.

and Ty =312°K and (dTy/dP)p _ o= ~5.1°K/kbar.!

This e)gponential dependence seems to differ
from that found in the one-band model,'? but
it is compatible with the two-band itinerant
model of antiferromagnetism.*™® We assume
that the electron Fermi surface and the hole
Fermi surface displaced by the spin-density
wave vector 6 match well so that

e i =
IEEI—IZ[G (k)—e (k+Q)]l<kBTN
for k on Ay;. Ay, is some finite area of the

Fermi surface which we shall refer to as the
“magnetic” part. Under these circumstances

the transition temperature will be determined
by a Bardeen-Cooper-Schrieffer equation and
the antiferromagnetic phase will have a tem-
perature-dependent gap over the “magnetic”
part of the Fermi surface. In this model Ty
is given by'®

T ~Tpexp(=1/1), (2)
where kTp is of the order of the bandwidth and
A =y?V(0)A,,/87%. In this equation y is an av-
erage matrix element, V(0) the screened Cou-
lomb interaction at §=0, and v is the average
of the velocities in the electron and hole pock-
ets. Equation (2) is compatible with Eq. (1)
if 1/x is expanded as a linear function of (V,
-V)/V, and if Tpg does not vary rapidly with
volume. It is difficult to make a meaningful
estimate of the expected functional form of the
volume dependence of the parameters that en-
ter X and no attempt to define more than the
leading term has been made.

We propose that the rapid change in X as a
function of volume is due to a rapid shrinkage
of A,y as the volume decreases. This propo-
sition can be tested by examining the electron-
ic Griineisen parameter'® which gives the log-
arithmic volume derivative of the electronic
specific heat at low temperatures, y,. In Cr
this is anomalously large and negative. If y,
=Yp=v'» where y,, is the density of states of

paramagnetic Cr, then y’, the density of states
in the “magnetic” part, should scale approx-
imately with A as a function of volume. Using
'ya/yp =1 at P=1 atm,'® one obtains

dlny’ _YP dlnyp Y dlnya
dlnV 3" dInV 3’ dInV

=10.5%2, (3)

where dlny,/dInV =1+ 1 was assumed, which
is typical of Mo (1.6) and W (0.2).1
By Eqgs. (1) and (2),

dlnn/dInV =26.50=9.3x1.5, (4)

where we have taken x =0.35+0.05. It is very
difficult to estimate A or Tg accurately, and
we have used ) = p.)/a/'y , where p is the aver-
age of the Coulomb interaction times the den-
sity of states. u has been estimated by Buch-
er and Andres® from studies of the Cr-Mo al-
loy system at ©=0.7+0.1. The good numer-
ical agreement between Eqs. (3) and (4) is prob-
ably fortuitious but does seem to bear out our
qualitative explanation. This value of X gives
kgTp=0.5 eV, which is smaller than the the-
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oretical bandwidth. If we took kgTp=2 eV,
then we would have x =0.23 and dInx/dInV =6,
The behavior of Ty raises the interesting
question as to whether Cr will be antiferromag-
netic at zero temperature at all pressures.
Equation (2) was derived assuming |&;, | <kgTy
over an appreciable fraction of the Fermi sur-
face, and when this condition breaks down,
then the transition temperature should drop
rapidly to zero. It can be shown'® that for a
simple band-structure model, dTy\/dV —~+
as T~ 0. However, for more irregular Fer-
mi surfaces it is possible to have dTN/dV fi-
nite as Ty—0. To the highest pressures stud-
ied no departure from an exponential was found.
In Fig. 2 the resistance is plotted as a func-
tion of temperature at different pressures.
If the lowest curve is scaled by multiplying
it by a constant factor, then it lies quite well
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where 7 is a unit vector, V is the velocity, and
E?=£2 + A? with 2A(7T) the temperature-depen-
dent gap introduced by the antiferromagnetic
ordering.!® The temperature dependence of
AR/R is shown in the inset in Fig. 2 and the
solid line is calculated using Eq. (6). Equation
(6) has two adjustable parameters and a good
fit was obtained for the data at P=26.6 kbar
and Ty =208°K using (02 /o )T 0=0.3 and

A(T=0)/kT=2.3. Ifa unlform relaxation time
and density of states is assumed over the whole
Fermi surface, then 0g,/0;=y,/yp. The val-
ue of 0.3 is smaller than the value of 0.5 es-
timated by Heiniger, Bucher, and Miiller."”
The ratio O9p /0 tends to decrease slightly
as the pressure is increased, but our data are
not accurate enough to derive any definite val-
ue for the rate of decrease.

It is difficult to estimate the accuracy of Ag/
k Ty because the following implicit assumptions
have been made: (1) The model for Cr assumes
a multidomain structure and a second-order
transition. It is known that Cr has a small first-
order transition® which was not observed.
(2) The resistance appears to have a precursor
which extends to temperatures considerably
above Ty ?! and this was ignored in computing
AR/R. This value is in agreement with Agp/
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T,

on the upper curves for 7> Ty- The contin-
uation for 7< Ty, shown as the dashed curve
in Fig. 2, gives an estimate of the paramag-
netic contribution to the resistivity R,. If one
assumes that the Fermi surface is divided in-
to two parts, then the conductivity can be writ-
ten as 0=0,+0,, where o, is the contribution
from the “nonmagnetic” part of the Fermi sur-
face and o, is the contribution from the “mag-
netic” part. The fraction of the resistance re-
sulting from magnetic effects is then
_A_sza—Rp=op_Ua OZp—GZa -

Ra Ra op (o] 1 + 02p

It is assumed that the relaxation times are
unaffected by the transition and that o, is un-
changed by the magnetic ordering. The ratio
of 0, in the antiferromagnetic and paramagnet-
ic phases is given by

a? !
IR
o EFe " +1

v, ﬁzé(e(k) w) = I (6)

L kTN =2.2 obtained by Trego and Mackintosh??
from studies of the thermopower of Cr alloys.
We should like to thank Dr. K. Andres for
pointing out the implication of the thermal ex-
pansion measurements and also Dr. E. Buch-

er, Dr. B. Halperin, Dr. V. Heine, and Dr.
C. Herring for useful conversations. We thank
A. L. Stevens for technical assistance.
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POLARIZATION AND INTENSITY OF RAMAN SCATTERING FROM PLASMONS AND PHONONS
IN GALLIUM ARSENIDE
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Raman scattering from plasmons and phonons
in GaAs has recently been reported! in which
the coupling between the longitudinal optic pho-
non modes and the longitudinal plasma modes
was demonstrated. We report here the inves-
tigation of the polarization properties and rel-
ative intensities of the Raman-scattered light
from these mixed plasmon-phonon modes in
oriented single crystals of n-type GaAs. The
results are in good agreement with theoretical
predictions? and yield values for the Raman
tensor and electro-optic coefficient of GaAs.

A neodymium-doped yttrium aluminum gar-
net laser with a cw output of 3 W at 1.06 p was
used to excite the collective excitations. The
experimental arrangement has been described
previously.! The samples were rectangular
parallelepipeds 3 X3 X7 mm in size with {100}
faces, and were mounted on a cold finger in
contact with liquid helium. The laser beam,
after passing through a polarizer, was incident
along a (100) axis of the crystal while the scat-
tered light was collected at 90° along another
(100) axis. The solid angle of collection was
about 0.08 sr. The system response was de-
termined as a function of polarization and wave-
length by using a calibrated quartz-iodine light
source.

Figure 1 is a plot of the Raman frequency
shifts as a function of the square root of the
electron concentration and shows the mixing
between the longitudinal optic phonon mode
of frequency w; and the longitudinal plasma
mode of frequency wy, = (4me®/e jm*)'/?. Here

n is the electron concentration, m* the conduc-
tion-band effective mass, and €_ the optical
dielectric constant. The Raman line shapes
and polarization properties for a sample with
n=1.9 Xx10'® cm~3 are shown in Fig. 2. The
transverse optic (TO) mode at frequency wy;

is unaffected by the presence of the free car-
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FIG. 1. Frequency shift of the Raman-scattered
light in GaAs at room temperature as a function of the
square root of the electron concentration. The solid
curves labeled L, and L_ give the frequencies of the
mixed longitudinal-phonon—plasmon modes calculated
from the roots of the dielectric constant of Eq. (4);
the dashed line labeled TO is the transverse optic
mode at frequency w;.
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