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but T, =0.345 instead of the value in Eq. (18).
The prima, ry purpose of this note is to call

attention to an approximate equation of state
which fits data with considerable precision above
and below the critical point. Details concern-
ing the variations of the fit with changes in the
parameters, discussion of possible modifica-
tions of this equation, and the interpretation
of the parameters will be treated elsewhere'
along with a presentation of our most recent
data.

It is necessary to add a few words concern-
ing this work in comparison to that of Kouvel and
and Rodbell' who also have reanalyzed the da-
ta of gneiss and Forrer. They have given evi-
dence for scaling laws using a procedure which
is in a sense the opposite of ours. They have
focused attention on the region of small M/(T
-T ) by assuming that in this limit

a/M = q-'(T) + a(T)M.

They then use these two parameters g and D
to normalize the isotherms and compare H/M
as a function of M for isotherms well above

T~. They demonstrate in this way that a scal-

ing law should hold. We have essentially ig-
nored the region of small M/(T-T )~ in obtain-
ing our approximate equation of state and it
is in this region that our equation fails, i.e.,
we would get from Eg. (1) that

a/M = q-'(T) + D'(T)M "
in the limit of small M. Our concern is not
with the proof of scaling laws for the region
of T& T~+2'C as already demonstrated by Kou-
vel and Rodbell but rather with the behavior
for region (Tc-2'C) & T&(Tc+2'C).
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Wigner' has pointed out that the ground state
of a system of interacting electrons in a uni-
form charge background has a completely dif-
ferent character in the low- and high-density
limits. At high density the kinetic energy is
dominant and the system is in gaslike phase,
described in good approximation by a single
Slater determinant of plane waves. At low den-
sity the electrostatic repulsion dominates and
the electrons become localized at the points
of a regular lattice.

Later, Mott' has postulated that a similar
situation presumably prevails for a lattice of
hydrogen atoms. If the density is high the elec-
trons are metallic, but, at sufficiently low den-
sity, the electrons are expected to become
bound to the ions, so that (at T=O ) the dc con-
ductivity would be strictly zero.

The theory of these high-to-low density tran-
sitions is difficult and has received consider-
able attention. ' Here we outline a simple ap-

proach, based on recent work on excitonic phas-
es, 4 which reveals some new features. For
brevity and simplicity we confine ourselves
here mostly to spinless fermions. All our con-
siderations are based on Hartree-Fock (HF)
theory, with a phenomenologically screened
interaction.

We begin with the Mott transition. We have
a regular lattice L of N nuclei and denote the
lattice parameter by d and the volume of the
fundamental Brillouin zone of L by Qo. For
spinless fermions the appropriate number of
fermions is &N, which, in the metal. lic phase,
leads to a half-filled band. To have charge
neutrality we take the nuclear and fermion charg-
es as +&e and -e, respectively.

At high density, or small d, the HF ground
state has the form

a-*4;
0 k. Qk 0kin Q
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here Q is the occupied, nearly spherical, re-
gion of k space of volume —,'Q„@p is the vac-
uum state; and ak* creates a fermion in the
self-consistent Bloch state pk.

Qn the other hand, at low density, or large
d, it is evident that the lowest energy state
is one in which the fermions occupy every oth-
er lattice site, thus minimizing the repulsive
energy. The corresponding HF ground state
has the form

II a- 4;
k in Qp'

to the original energy band at the new Brillouin
zone boundaries. The system will therefore
remain metallic for a finite range of lattice
parameter, d, &d &dp+lekd.

Similar considerations may also be applied
at finite temperatures T, which —because of
the role of the entropy —disfavor the superlat-
tice. Thus near the high-density side, d, will
be an increasing function of T. Near the insu-
lating limit, purely electrostatic considerations
make it obvious that the critical temperature
for the dissolution of the superlattice is given
by

here Qp' is the fundamental Brillouin zone of
the new (super)lattice, L', of volume ~00; and
gk'+ creates a fermion in a Bloch state y '

k
of the superlattice which may be decomposed
into

p '(r)=u-X.-(r)+v X- -(r),k kk kk+w (3)

k T = y(e'/d),

where y is a numerical constant. Thus we are
led to a critical curve C whose topology is shown
in Fig. 1. Qn dimensional grounds the maximum
critical temperature has the value

(kT ) =y' Ry,
where uk and ek are coefficients; the yk are
Bloch-like functions with the periodicity of I,;
and w is one of the new reciprocal lattice vec-
tors of I '. This state is evidently insulating
and can also be written in the form

pN +
II w 4

n=l

where the u ~ create Wannier functions local-n
ized near each site of I.'. The band gap is clear-
ly of the order of e'/d.

Equations (2) and (3) suggest that we iook,
even in the metallic phase, for a ground state
of the form

II (u-n- +U-o.- - )4,0 . k k k k+w' 0'
kin Q

where ek* creates a fermion with a Bloch-like
wave function of a periodicity corresponding
to I,.' For very small d one finds uk= 0. How-
ever, one can show that, as d is increased,
there exists a critical value d, such that for
d &d„~k~ 0.' We know that such a critical d,
exists from our earlier remarks about the lim-
it of very large d. We may also remark that
the cost in kinetic energy of mixing in the wave
functions with k+w is proportional to the band-
width, which decreases exponentially with d,
while the gain in potential energy decreases
only as d ~. For d dp+0, the original symme-
try of the lattice is only infinitesimally broken
and thus infinitesimal gaps are introduced in-

where Ry is the Rydberg and y' is another nu-
merical constant.

In addition, the considerations of Ref. 4 lead
us to conclude that, inside C, there is an infin-
ity of further phase boundaries, separating
different "excitonic phases" in which the elec-
tronic density exhibits fluctuations character-
ized by additional wave vectors w', w", etc.
These phase boundaries are schematically in-
dicated in Fig. 1 by the dashed curves. The
phase transitions are all of second order.

The Wigner transition of spinless fermions
is, from the present standpoint, basically sim-
ilar, but somewhat more difficult. We consid-
er a system of N fermions characterized by
the Wigner-Seitz radius r~. For high density,
or small r, the ground state is that of a nor-
mal metal, with complete translational invari-
ance. As r~ is increased, the first instabili-
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FIG. 1. Schematic phase diagram for the Mott transi-

tion. d is the lattice parameter and T the temperature.
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ty, occurring at a critical value (rs)0, is a
second-order transition of the Overhauser va-
riety. ' The new phase has one (or more) den-
sity fluctuations characterized by some wave
number w and is again metallic. As r is fur-
ther increased, the wave number w will change
continuously, in contrast to the Mott transition
where it is locked by the reciprocal lattice of
the underlying periodic lattice.

In the low-density, high-r~ limit we have
an insulator~ in which the fermions are local-
ized at the sites oi a regular lattice' (equiva-
lence of Wannier and Bloch determinants for
an insulator). The band gap is of the order
e'/rs

For finite temperature, we find a phase bound-

ary separating the normal, translationally in-
variant phase from the phase with broken sym-
metry, similar to Curve C of Fig. 1. The max-
imum critical temperature is again of the form
Eq. (8) and the behavior for large rs is like
Eq. (6) with rs replacing d.

An interesting feature, not present in the
Mott model, is the following: For fixed r~,
as T is increased from 0', the wave number(s)
characterizing the spatial order will change
continuously. This is so even in the dilute (in-
sulating) limit, where the lattice parameter
of the Wigner lattice changes as "electrons
and holes" are produced, so that the number
of cells no longer equals the number of fermi-
ons.

Finally we expect again an infinite sequence
of excitonic phases, similar to those of the Mott
model.

When spin is introduced, phases with mag-
netic order must be also considered, in both
the Wigner and Mott models. As a result the
problem becomes, quantitatively, much more
complicated and difficult. However, the qual-

itative character of the phenomena remains
entirely similar.

How reliable are our conclusions& Within
the HF approximation, we can say that the suc-
cessive second-order transitions which we have
discussed will certainly occur, unless some
first-order electronic transitions intervene.
Possibly both types of transitions may occur.
We plan to carry out quantitative HF calcula-
tions of the Wigner and Mott transitions to clar-
ify this point. As for correlation effects, they
are responsible for collective modes (excitons,
acoustic and optical plasmons, and spin waves)
which may lead to qualitatively new effects.
Especially in the signer model, melting asso-
ciated with large amplitudes of low-lying modes
may occur.
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