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One such model is readily constructed by assuming
that the conserved unitary spin currents are propor-
tional to the vector fields, and parametrizing the me-
son-baryon form factors in terms of a single pole. If
one is unwilling to accept such models, one can appeal
directly to the observed proportionality of form fac-
tors for q & 0 and make a "smooth extrapolation" !
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It is well known that the pm7T coupling constant
and p mass are related experimentally to E~,
the fundamental constant of partially conserved
axial-vector currents (PCAC), ' by the relation

'/m '-=0
PTT7T P

This relation was first noted by Kawarabaya-
shi and Suzuki' who obtained Eq. (1) by apply-
ing PCAC, p dominance, and current algebra.
This relation has also been obtained by sever-
al authors, ' ' using various other methods
and approximations. We would like to point
out, in this Letter, that Relation (1) does not
follow from PCAC, p dominance, and current

algebra as unambiguously as has previously
been thought. In particular, we shall suggest
a, generalization of Relation (1) which indicates
that its approximate validity is related to the
relative weakness of the interaction in the pm

system with the quantum numbers of the A,
meson, f(JPG) = 1(1+ ).

Relation (1) was obtained in Ref. 2 by extrap-
olating ypz~ to zero n and p masses. The ex-
trapolation of the p mass was not done explic-
itly, however, and we have not been able to
find a satisfactory definition of this extrapola-
tion which leads to the desired result. Consid-
er, for example, the most direct definition
of yp» for all three particles off their mass
shells,

2ie (ek)y (k, q, p )=P (k )P (q )P (p )e fe (OIT[D (x)D (y)V (0)]10),ab c pm@
' '

m m p

D (x)=8 A (x), P (k )=(m —k )/m F, p=k+q, P (p )=(m —p )/F,a p, a 2 2 2 2 2 2 2
7T 7T 7T 7T' p p p

(2)

with p t,F e& = (0 ~ V~~ [p ep). Hopefully, p dom-

inance of the vector current Vy will make

y a slowly varying function of p2. Current
algebra can be applied to Eq. (2) in the usual
manner of taking the derivatives of the axial-
vector currents outside the time-ordered pro-
duct and taking the limit of Eq. (2) as k, q —0.
A prediction for yp~~(0, 0, 0) is obtained by
equating terms linear in k and q,

F~(0) is the extrapolation of F~ to zero pion
mass. The algebra leading from Eq. (2) to

Eq. (3) is straightforward but tedious. glhen
applying the current commutation rules, one
obtains both the axial-vector and vector cur-
rent propagators, h&yA arid A&yV, but the
covariant part of b, &y& is quadratic in k and

q and does not contribute to Eq. (3). The non-
covariant parts of the two propagators cancel
by virtue of Weinberg's sum rule, e as they must
if the right-hand side of Eq. (2) is to be covar-
iant as k, q -0. Qne is then left with the covar-
iant part of 4&~A, with only the contribution
from the m intermediate state (and 0 continu-
um) giving a term linear in the momenta. Re-
turning to Eq. (3), we see that, since we ex-
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pect from PCAC that F~(0) =F~, this extrap-
olation of ypzz yields the conventional result
of p dominance of the electromagnet form fac-
tor of the pion, Ep=mp'/yp~~. Hence Eq. (2)
defines a very good extrapolation of yppz but
does not tell us anything new.

There are, of course, many ways of extrap-
olating a physical quantity off the mass shell
and PCAC and p dominance still do not pro-
vide a unique prescription for the extrapola-

tion. For example, Kawarabayashi and Suzu-
ki' first take both pions off the mass shell,
apply current algebra, and then extrapolate
the result of the p mass shell. This leads to
the result

2y (Q2 q2 p2) F' (P2)/F 2 Q q ~ 0
P7T77 P 77

where Fp(P') is the extrapolation of Fp=Fp(mp').
Unfortunately, the definition of Fp(P') using

p dominance,

5 e F (P )=P (P )e ife (OIT[V (x)V (0)]IO)=5 P (P )e b, (p),
p p V P. ab p vp.

(4)

is noncovariant unless P'= m ', because of the
p

Schwinger term in the vector current commu-
tator. If we take the conventional covariant
part of the propagator in Eq. (4), rY&~V= (P2g»
—p&p~)b. V(p ), we find Fp(p')- (p'/mp')Fp
as P -0. In other words, if the p had zero mass,
its coupling to the photon should vanish. Be-
cause Eq. (4) is noncovariant, however, we
can always define the covariant part in any way
we like as long as the limit as p'- m ' is un-

P
changed. In particular, if we subtract from

6» only the term proportional to 5&05~0,
then we can obtain the desired result, F (0)
=Fp(mp'), leading to Relation (1). In this case
we might just as Nell interpret the observed
validity of Relation (1) as telling us how to de-
fine the extrapolation of E&.

Another way of carrying out the extrapolation
of y»~ is to take one of the pions and the p
off the mass shell first, apply current algebra,
and then extrapolate the remaining pion. This
time the procedure is straightforward and we
obtain, again, Eq. (3).

The other derivations of Relation (1) require
other assumptions in addition to PCAC, p dom-
inance, and current algebra. Sakurai' must
assume that the low-energy, S-wave, pion-nu-
cleon scattering amplitude with I= 1 in the I,

channel is given by p exchange. Gilman and
Schnitzer' obtain (1) by comparing the spin-
averaged sum rule for m-p scattering obtained
for zero w mass with the sum rule obtained
for zero p mass. Relation (1) is obtained if
the difference between these sum rules is sat-
urated by the 7t intermediate state. While the
~ and y intermediate state contributions ex-
actly cancel, they must assume that there are
no other important interactions in the wp sys-
tem near threshold, such as a 1+ meson, for

! example.
Riazuddin and Fayyazuddin' obtain (1) by de-

riving a Goldberger-Treiman-like relation
for the matrix element,

a . b c
ie F =(m qliA Ip ~P)abc

=F (k,q )e +(eq)[F (P+q) +F k,], (5)
2 2

extrapolated to zero w mass. As usual, p =k
+q. But, since there are three invariant func-
tions to deal with, PCAC and current algebra
do not yield enough information to determine

pppp the way Goldberger and Trieman deter-
mined g~N from (NIA~ IN). Relation (1) was
obtained in Ref. 3 by assuming F, to be constant,
F+=0, and F given by n dominance. Again,
the derivation requires the explicit neglect of
possible contributions to Eo, E+ coming from
an interaction in the mp system with the quan-
tum numbers 1(1+ ). The rest of this Letter
will breifly discuss the results obtained when
contributions from this mp state are included.
For simplicity we will assume that this state
can be represented by a single axial-vector
meson, which we denote by A (let us keep an

open mind about associating the A with the still
controversial A, meson).

To apply current algebra and PCAC to Eq.
(5), extrapolate F& in the pion mass,

i~ F =iP (q )Je 8(x )
2 iqx 0

&& (01[& A (x), iA (0)] I p ep). (6)
A.

Taking the limit q -0 of Eq. (6) leads to the
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condition

E (m ', 0)=F /F .
0 p' p m

(7)

A. 2 2 2
k F =(eq)[(m —q )F +k E F]—

p + — 0

Assuming that o
&

in the commutator, 6 (xo)
&&[AO (x), 8 A&~(0)]=i5(x)v~i„ is a local sca-
lar operator, or, at least symmetric in a, b,
so that (01&at, I pc) = 0, then k~F& is proportion-
al to yp~~, extrapolated by PCAC off both pi-
on mass shells:

for F+, keeping q' fixed. The only intermedi-
ate states that can contribute to the dispersive
parts of F+ are those states coupled to the mp

system and with quantum numbers 1(0 ) or
1(1 ). We approximate Eq, therefore, by
taking only n and A intermediate states. This
enables us to use Eq. (8) to determine F,(k', q')
in terms of fAp~ and gAp~, the two Apw cou-
pling constants; FA, the analog of Fp, and

yp~z. Equation (7) then leads to the sum rule

2 2 2 2= —2(eq)y (k, q, m )/P (k ).
pF7t p 7T

Apply unsubtracted dispersion relations in k'

1-2y (O O m ')E ' m '
pan. ' '

p m A p
rn FF

p p m A

where fAp~(q'), gAp (q') are defined by

(9)

P (q )(p e'k ls A IA eP)=if [(m —m )f (-ee') —Pg (e'p)(ek)]
2 a, u b c 2 2

jj abc A p Ape App

(m '-m ')2
t

m 2+m '
=i@ I g ( ee')+-I g +, g (e'p)(ek), q =P-k,A p A p

abc ( 2m jA

and 5 &FAe&=(0liA~ IA ep). g7 and gL, are
the Ape couplings for transverse and longitu-
dinally polarized p's defined by Qilman and

Harari. '
A second sum rule can be obtained in a sim-

ilar manner by interchanging the roles of p
andA and V& andA&, dealing with the pion
mass extrapolation of the matrix element (v~ I

x V& IA ). Here we use p dominance of the
dispersive parts in the dispersion relations
and the condition B~V~c=0. The result is

f (0)+g (0)=(m '/m ')(E /E E ). (10)
Apm Ape p A A p

In previous attempts8 to apply Pq. (7), an
unsubtracted dispersion relation was taken
for E,(k', 0) rather than for F~. A careful com-
parison of the two approaches shows that one
cannot assume unsubtracted dispersion rela-
tions in all three amplitudes and still maintain
w and A pole dominance. Since perturbation-
theory models indicate that F+ is of the order
of F,/k' as k'-~ (indeed PCAC tells us that
F satisfies an unsubtracted dispersion rela-
tion), we feel that the approach used in this
paper is more reasonable than that adopted
in Ref. 8. The same remarks apply to the de-
rivation of the second sum rule, Eq. (10). A
more complete derivation and discussion of

these and other sum rules will appear elsewhere.
The results oi Ref. 3 follow from Eq. (9) if

EA(fAp~-gAp~) is set equal to zero. Then

1-2ypz~(0, 0, mp')F&2/Fp = 0 becomes Relation
(1) if, by p dominance, we set F =m ~/y „,
neglecting corrections due to taking zero pion
masses in yp~~. There is no a priori justifi-
cation for the vanishing of EA(fApz-gAp~),
however, so that the fact that Relation (1) is
approximately satisfied, combined with Eq.
(9), gives the prediction

fAp~ gAp" "gv gr.

This result, by the way, is completely incon-
sistent with the solutions of Gilman and Hara-
ri, who foundg&=0, gL =4/F~ by saturating
Adler -Weisber ger and super conver gent rela-
tions for m-p scattering by m, co, andA states.

In Ref. 8 we were able to derive the result
FA =F; but, unfortunately we also predicted
too large a value for fA (gAp does not con-
tribute to the sum rules in Ref. 8). These sum
rules, therefore, correspond to a chiral-sym-
metry limit which, at best, is only very rough-
ly approximated by nature. Consequently FA
must be considered an undetermined parame-
ter in Eq. (9) and (10). We can restrict FA,

772



VOLUME 19, NUMBER 13 PHYSICAL REVIEW LETTERS 25 SEFTEMBER 1967

however, if we take as, a third sum rule, the
one obtained by Weinberg by equating the non-
covariant parts of 6»A and h»~ and satu-
rating their spectral functions by n, A, and

p states. Rewriting it slightly, we have

(F '/2m ') (1+$) = F '/m
p p A A

where $ = 1 2F&-2ypz&2/mp2 and Fp = mp2/y
While Relation (1) requires g to be small, we
would like to understand, if possible, from
Eqs. (9)-(11), why this should be so. If we fix
mA & mp and solve for fAp~ and gAp~ as func-
tions of t and IA, then the character of the
solutions is such that fAp~'+gApa' is minimized
in the neighborhood of ) =0 (i.e. the minimum
is given by $= -m a/8mAa). In other words
the Ape coupling is reduced considerably by
virtue of Relation (1).

If we adopt Weinberg's second sum rule [Eq.
(4) of Ref. 6] equating the integrals of the ax-
ial-vector and vector spectral functions of h»A
and A»~, ' then we might expect FA —=Fp How-

ever, since the integrals over the spectral func-
tions are less rapidly convergent (indeed it
is surprising that they should converge at all),
the assumption of p and A dominance, in this
case, is more questionable so that we would

not be surprised if FA deviated appreciably
from Fp. An alternative approach'0 of treating
vector and axial-vector currents as meson fields
themselves can lead quite naturally to the con-
ditionFA=F . Setting FA=F in Eq. (11) de-
termines mA in terms of $, mAa= (1+ $) '2m a.

Equations (9) and (10) then fix fA z and ZApv
in terms of $, and, again, fAp~*+gAp~'talkee
on its minimum values near (=0.

Finally, if we assume that the A, at mA = v 2m

is our A meson, then we can predict its width,
using Eqs. (9)-(11), and fixing $ =0.13 by us-
ing I'(p-2v)=120 MeV andF~=0. 1 M . The
result is I'(A, —p+ m) = 120 MeV, with FA = 1.06
Fp. The case $ =0, FA =Fp, on the other hand,

predicts an A, width of 60 MeV. If the A, me-
son does turn out to be a bona fide resonance
at this mass, then our sum rules do predict
the right order of magnitude for its width.

To summarize, we have found no unambig-
uous derivation of Relation (1) based solely
on the assumptions of PCAC, p dominance,
and current algebra. We have obtained sum
rules for the Apn couplings such that Relation
(1) tends to minimize these couplings. Indeed,
if it were not for the attractiveness of the Wein-

berg sum rules, e we would be led to conclude
from Relation (1) that there is no dominant A-
meson state. It is possible that Weinberg's
relations are satisfied by the continuum in the
1+ state that contributes significantly to 4»A
but not to F~. We can only speculate, howev-
er, until the experimental situation on the ex-
istence of an A meson is clarified. In any case,
Relation (1) remains of great significance to
current-algebra theories of strong interactions
and is, at present, somewhat of a mystery.
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'5~F~q& ——(O~iA& [n q). A& is the conventional
isovector axial-vector current. The amplitude for x+

+v is proportional to (0~A&' iA& —
~

w q) = i~2Fz q—&,
so that this decay mode yields E& 0 1Mp Mp the pro-
ton mass. The Qoldberger- Treiman formula predicts
F~ = (1.18Mp)/gzN(0), where g~~(0) is the pion-nucle-
on coupling constant extrapolated by PCAC to zero pi-
on mass. Ifgz~(0) is replaced bygzN(m+2), one finds
F~= 0.088M@. Using the latter value of F~ in expres-
sions involving F~ changes things by 30%. Equation
(1) is satisfied best when using the larger value for 5'z
obtained from the charged-pion decay rate. All our
states will be normalized to (2x)~2~q5(q-q').
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