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mentally g~+ = 0.79.
result of H. T. Nieh,
the divergence. The
bibbo angle.

However, the value of g~&~ is uncertain. We therefore prefer to use the superconvergence
Phys. Rev. Letters 19, 43 (1967). We have also usedg ~=g~~ which is essential to remove

numerical value of the mass difference is damped to a (arge extent by the presence of the Ca-
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We derive a low-energy theorem for pion Compton scattering giving terms of second
order in photon frequency. This is then used to derive the value of the low-energy pa-
rameters. The low-energy theorem is also converted into a sum rule and a reso-
nance saturation is attempted.

The low-energy theorems for Compton scat-
tering giving terms up to first order in photon
frequency have been discussed in the literature. '
These theorems have been further extended
to the case of Compton scattering when the
photons also carry a "charge" label and thus
describe the "isovector or unitary octet pho-
tons. " These low- energy theorems directly
give information about the low-energy parame-
ters. They can also be converted into sum
rules if the relevant amplitudes satisfy unsub-
tracted dispersion relations. ' On saturation
with low-energy bound states and resonances
these sum rules can lead to important under-
standings of the low-energy dynamical symme-
tries and to various interesting relations be-
tween certain coupling constants which, in gen-
eral, may not have followed from a symmetry
approach.

The purpose of the present note is to show
that some low-energy theorems can be obtained
to second order in the photon frequency. These
theorems are exact to all orders in the strong
interactions and to second order in electromag-
netism. In order to illustrate the method we
discuss the simple case of pion Compton scat-
tering. The method used, however, general-
izes in a straightforward way for Compton scat-
tering on targets with spin and is thus appli-
cable to nucleon Compton scattering.

Let the pion Compton T-matrix amplitude
be given by

T (s, u, t)

= [A (s,u, t)a +B (s, u, t)b ]s'np np, *u ~

p, v JtL V

P =p+p',
s= (p+k)', u= (p —k')', t = (k —k')',

p =p' =m2, k =k 2=0,

and p, k, e (p', k', e') are incident (final) pion
momentum, photon momentum and polariza-
tion four vector, respectively. The n, P a,re
"charge" labels pertaining to the final and ini-
tial photons. The amplitudes A(s, u, t) and B(s,
u, t) are the kinematical singularity-free Man-
delstam amplitudes. The new low-energy the-
orem we obtain is given by

lim lim dF (s, t)
s-m t-0- dt

(2)

where

~bp)(, t)

= (s-m )(u-m )[A (s, u, t) +A (s, u, t)].2 2 Pn nP

The low-energy theorem (2) can be used to
derive the relations between the low-energy
parameters. We find

f, (m )= —(3/20m )f, (m )

where

a =tP P +(s u)(k P +P k ')
p, v p, v

+ (t—4m )k k '+2[(s-m')(u-m ) m t—]g
P. V p. v

b =k k '+(2t) g
p, v p, v p v
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3 df+
10m' ds

s =m'
where

and

lnp) 2 5 4P) 2
m +

df (np)

7 w ds =0, (3)

with ~, q A, and A, mesons we obtain

I"((u —w'y) F(y —m'y)

m ' m

I'(A, —w y) 151 (A, —m+y)
(7)

mA
A2

(.oiT (.)&»i.o&

2 J-1
v (s-m )

f (s)=-bp)
J

= —(~ /12 )~+ (0),+ (0 (4)

are the reduced partial-wave amplitudes for
total angular momentum J between initial and
final photon helicities equal to 1. v'= (s-m')'/
4s is the c.m. momentum squared. We can
combine (3) with the value

It is interesting to combine this relation (7)
with those obtained from the Pagels-Harari
and Cabibbo-Badicati sum rules on saturating
with the same set of states. Using gee') =1/
mp &

which is the p-pole model value for the
pion charge radius, ' and I'(p —Troy) =0, we ob-
tain

I'(&u -w'y) =1.6 MeV,

1(A,+- ~'y) =0.3 MeV,

bp )(,)-
10m2 ds
2 .2w (0),& (o)).

s=m

given by the Thomson limit. We then obtain

f ( )=(e /40mm )-'P (0),& (0))

and

bp) 2 1 df, (s)bp)

(5)
where

O.'V V 0
PV VP

I"(A2 -m y) =0.4 MeV.

The calculated I'(uP —v'y) seems in reasonable
agreement with the measured value 1.15+0.24
MeV. ' The n'y widths of A,+ and A,+ have not
yet been measured.

Derivation of the low-energy theorem. —We
now briefly sketch the derivation of the low-
energy theorem (2). We have the gauge con-
ditions

As the above theorems are for amplitudes sym-
metric in charge indices n, P, the low-energy
theorems (2) and (5) are also applicable to the
scattering of physical photons on pions. To
obtain the corresponding results for ye+ and

ym scatterin all one has to do is to replace
2e {& (0),+ (0)) by e' and 0, respectively.
Thus, e.g. ,

f, (m )=e /40mm,
7T y~1T y 2 2

The low-energy theorem (2) for that F(s, t)
amplitude which is pure I= 2 in the t channel
(&+&-yn+yp) can also be converted into a
sum rule [see Eq. (33)] by use of an unsubtract-
ed dispersion relation. For the corresponding
t-channel I=0 amplitude we certainly cannot
use unsubtracted dispersion relations as the
Pomeranchuk Regge pole will contribute to this
amplitude. On saturating the I= 2 sum rule

a g 6 e
PV PV PV

which leads to

bp), , » bP)
00 m nmn (10)

np np np
oo + oo

where Poo P is the contribution of the pion in-
termediate state and E«np is the excited-state

where ~ =k„~' =ho'. We shall be working in
the laboratory frame (p=0). The angle of the
scattering in the laboratory frame shall be de-
noted by 8, i.e. , k' ~ k=co~'cos8.

It is obvious from (10) that in order to cal-
cul te Tm„&np) to the order w' one has to know
T» np) also to order m'. This, however, in-
volves looking explicitly at the contribution
to T«np arising from intermediate states which
are not degenerate in energy with the pion,
i.e. , "excited state contributions. " Let us write
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contribution. As is well known the contribution E,o~p is of order &u'. We have

E (p'V (0)lp+k, E (p+k), f )(p+k, E (p+k), f IJ' (0)lp)

(2w)'[4E(p)E(p')]"' )
( +E(p)—E (p+k)n, g n

n

(p'IJ (0)lp —5', E (p —5'), P )(p—k', E (p —k'), P IZ (0)lp)0 n ' n ' n ' n 0
—(u+E(p) —E (p-K')

n, f n
n

(12)

where E(q), En(q) are, respectively, the energy of the pion and of the nth intermediate state with
total three-momentum q. The label fn stands for other quantum numbers like spin needed to spec-
ify the intermediate states. Using current conservation we can rewrite (12) as

1

/(2~) [4E(p)E(P)]'

(P'IZ (0)lp+k, E (p+k), & )(p+k, E (p +k), f U (0)lp)

m l ' E p', —E p+k E p+k —E p e+E p -E p+k
n, P n n n

n

(P'IJ (0)lp-k', E (p —k'), f )(p-k', E (p-k'), f IJ (0)lp)m
m l E p' —E p-k' E p-k' —E p -co'+E p -E p-k'

n, f n n n
n

—= k 'k A ((u', k', (u, k)+k k 'A (-(u, —k; —(u', -k')
m l ml ' ' ' m l ml

=k 'k A (0, 0;0, 0)+k k 'A (0, 0;0, 0)+O((u ).

Now ~PP(0, 0;0, 0) is a pure numerical three-tensor. Therefore

A (0, 0;0,0) =A. 6 /(27r) (2m),ml ml

where A~P is related to the zero-frequency polarizability of the pion. Hence

(14)

Now in general we can write

(~ +~ )+O(+

+TO +Tk k'+Tk 'k+T (k k+k 'k')+T (k k —k 'k'),
mn mn 1mn 2mn 3m n 4 mn m n 5 mn m n

(16)

where P~n is the explicit pion-intermediate state contribution to Tmn and T~ =Tg(~, &u) [i =1, ~ ~ ~, 5]
are nonsingular at (u =0. Using (ll) and (16) in (9) we obtain

T cos8+ (~&a'cos'8)T +~~'T + (~'+ &a") cos8T + (cu'-~") cos8T
1

= [P -k 'k P /ce&u']+E
m n mn

k 'k P ~~P] e~
=-.'-.8V (0),F (0)], .(2-.8-1)(F (0),F (0)]

cos8[P (0),F (0) yF (0),F (0)]']+0(& ),
2 2 a p' n' p 3

(18)
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where F (t) is the form factor of the pion with
charge index n .We have F+(0)=I, the nth
component of isospin.

The crossing symmetry gives

T bP)(„, ) „TbP'I(,
)

2 "22 (19)

where g. =1 for 2 =1,2, 3, 4 and g, = -1. There-
2

fore

(o'(u) =T, (0, 0) + 2m ((u'-(u)aobp), ~p, bp)

+4m (~+(u') a, +O(( ),
bp)

T. ( Id', tu)= T. (0, 0)+O((u ) (t= 2, 3, 4),

(24)

where

T, (0, 0) = -2F (0, 0),

, bP)
2

bP)
2 ohio+ ao —

0 i

(25)

(26)

((u', (u) =F (0, 0) + 2m ((u' —(u)f,-np "np 4p)

+ 4m ((e + (u') f, + O((u ).(nP 3

T2 ((d, oo) =B ((d ~
(d)-4m A ((d ~ (d)~

np, -np 2 -np

where F(&u', m), A(&u', &u), and B(m', m), are,
respectively, F(s, t), A(s, t), and B(s, t) re-
expressed as functions of &u and &u'. Using (23)
we get

Ts ((u', (u) = O((u).
bp)

(20)
We further have in the laboratory frame

s =m'+ 2m+, u =m2-2m+', t = 2m ((u'-(u),
Using (15), (18), and (20) in (17) and only

comparing the coefficient of 1 and w cos & on
both sides, we obtain., '"(o,o) =- '~ (0),"(0)~,

T (0 0) 2 0

We do not get anything useful by comparing
the coefficient of the v' and co'cos8 terms.

We would like to re-express the two low-en-
ergy theorems (21) and (22) as referring to the
invariant amplitudes. By going to the labora-
tory frame and using (1) we find

np "np
T, (&u', oo) = 2F (&u-', ~)

+ ~w'(1- cos8)T, (ru', ru),

(21)

(22)

x.e.,
2m(o" —(u) =t

2m ((u'+ u)) = 2(s-m') + t.

The low-energy theorem (27) gives the usual
Thomson limit. The theorem (2) is new. '

Low- ener~ parameters. —The low- energy
theorems (27) and (2) can be used to give in-
formation about the low-energy parameters
of pion Compton scattering. We have the par-
tial-wave expansion

Therefore combining (21), (22), (25), and (26),
we finally get

lim lim F (s, t) = 2e P (0),F (0) j, (27)
(np), 2 n p

s-rn' t-0

lim lim dF (s, t)bp)
s-nz' t-0

(s, t) =-4wl 1+, l (2J'+1)f (s)(s—m )
1o'p) &np)

s-m'

"(cos8 ) P "(cos8 )+J—P '(cos8 )s J s J s
J(J+1) (28)

(I) (I) o.'I(t)-2
, t t

t fixed
(29)

where cos8s =1+tj2v'. Using the expansion
(28) together with (27) and (2) we obtain the
results given earlier in Eqs. (3)-(6).

Sum rule. —In order to convert the low-en-
ergy theorem (2) into a sum we have to discuss
the asymptotic behavior of the amplitude F (s, t ).
By doing the usual Regge analysis in the t chan-
nel it can be shown that (30)
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where the superscript (I) denotes that the am-
plitude is pure isospin I in the t channel, and
nI(t) is the position of the leading singularity
in angular momentum for the isospin-I t-chan-
nel amplitude. Using (29) we have

(I), .(I), ,~I(t)s
t fixed

We are only interested in I= 0, 2 amplitudes



VOLUME 19, NUMBER 12 PHYSICAL REVIEW LETTERS 1S SEPTEMBER 1967

as the theorem (2) holds only for amplitudes symmetric under o.', P. For I=O we certainly have the
Pomeranchuk Regge trajectory for which n(0) = I. We therefore cannot write unsubtracted disper-
sion relation for F +~(s, t). If we assume that a2(t) &0 for a, neighborhood in t around t =0 we can con-
vert the Thomson theorem (27) and the theorem (2) into sum rules by using the unsubtracted disper-
sion relation

E' '(s, t) =- ImF" (s', t)ds'. , +
1 1 1

7T s'-s s'-2m'+ s+ t

-1 " 1ds'ImA"'(s', t)(s' —m')(s'+t m')-, +
7T

s'- s s'-2m'+ s+ t

We then obtain, using the Thomson theorem,

e' =—Jds'(s'-m') ImA+'(s, 0)2 2
(32)

which is the Pagels-Harari sum rule. Using theorem (2), we get the sum rule

—' ds'(s'-m')I '
I +—fds' ImA'@(s', 0) = 0.

1-e'+ —fds'(2s'-2m'+ t) ImA N'(s', t) = 0
r (34)

for t such that o.,(t) &0. By evaluating the su-
perconvergence sum rule at t =0 and by taking

its first derivative with respect to t at t =0
we obtain the sum rules (32) and (33).

We must, however, emphasize that if there
is no region of t around and including t=0 for
which n, (t) &0, then neither the sum rule (32)
nor the sum rule (33) is valid. Such, for ex-
ample, would be the case if there is a fixed
J=O, I=2 Regge pole in the t channel. ' The
low-energy theorem and the information about
the low-energy parameters, of course, still
remain true.
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Some remarks may be in order on why we have cho-
sen this particular derivation of the low-energy theo-
rems. The present method generalizes with ease to
the case of Compton scattering of the physical as well
as the charged photons on higher spin targets. It is
conceivable that it may be possible, at least for the
case of the physical photons, to give a pure S-matrix
derivation of the new theorems provided that one is
able to write down a set of linearly independent invari-
ant amplitudes which are free from both these kinemat-
ic singularities and zeros. This, however, is a highly
nontrivial problem and is still unsolved in general.
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