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Sets of t = 0 current-algebra and superconvergence sum rules are treated as equations
in the coupling constants and masses of states which are assumed to dominate the sum
rules. The solutions of these sets lead to new mass relations among particles of differ-
ent spins and parities. The algebraic structure of the sum rules and their solutions is
discussed.

In a previous paper' (hereafter denoted by
I) we have suggested that the complete set of
current-algebra and superconvergence sum
rules for forward scattering of pions on a had-
ronic target x leads to a determination of mass-
es and coupling constants of various states
which are assumed to dominate the sum rules.
We have shown' that the complete set of ~-p
t =0 sum rules is approximately saturated by
the v, +, and A, intermediate states and that
the predictions obtained for m~, mA, g~&~,(dP&&
and I'(A, -pm) are in good agreement with ex-
periment. In this paper we analyze the alge-
braic structure of the t =0 sum rules for v-x
scattering and apply our technique to a few
additional cases. We use the same assumptions
as in I and find the following'.

(a) If all "pure" t =0 superconvergence and
current-algebra sum rules' for r-x scattering
are saturated by states forming an irreduci-
ble representation (IR) of the SU(2) 8 SU(2) chi-
ral algebra of charges, the complete set of
equations in the masses and coupling constants
has a unique, nontrivial solution in the limit
of zero pion mass.

(b) If additional states contribute to the sum
rules we always find a consistent solution.
However, the uniqueness is lost and we can
express all masses and coupling constants in
terms of a few free parameters, correspond-
ing to the mixing coefficients of the addition-
al IR's which contribute to the sum rules.

(c) All states in a given IR of SU(2) 8 SU(2)
have the same m2 value. 3 If the SU(2) Cgw SU(2)
states are mixtures of single-particle states,
their m' values are given by the appropriate
weighted averages of the m' values of the mixed
physical states.

(d) The application of these considerations

to various simple cases leads to many new

mass relations among particles of different
spins and parities.

As in I, we assume (1) chiral SU(2)@SU(2)
algebra of charges, (2) [D', Q,~]=5'~S, where
D' = (d/dt)Q ' (3) partial conservation of ax-
ial-vector currents (PCAC), (4) s~I( )

high-energy behavior for a t-channel ampli-
tude with helicity change M and isospin I, where
nl(0) is the t = 0 intercept of the leading Reg-
ge trajectory, and (5) o.,(0) &0.

The only nonvanishing s -channel helicity
amplitudes for ~-x scattering at t =0 are the
amplitudes Ap& 0&. The helicity crossing ma-
trices indicate that the only t-channel helici-
ty amplitudes which may contribute to Ap& 0&
at t=p are App» where p. -v is even. It is
therefore convenient to divide all t = 0 super-
convergence relations into two classes: Sum
rules of Class I involve amplitudes (with even
M in the t channel) which contribute to the
nonvanishing helicity amplitudes at t = 0. These
are "pure" t = 0 sum rules and the correspond-
ing amplitudes can, in principle, be measured
directly. Other sum rules (Class II) involve
amplitudes (corresponding to odd M in the t
channel) which do not vanish at t = 0 but do not
contribute to any of the nonvanishing t =0 he-
licity amplitudes. 4 In principle, such an am-
plitude B(s, 0) can be determined only by ex-
trapolating B(s, t) to t =0. The algebraic anal-
ysis presented in this paper refers mainly to
the "pure" (Class I) sum rules which are the
ones related to the physical forward-scatter-
ing amplitude. Class-II sum rules may, how-
ever, give additional information and enable
us in a few cases to determine parameters
(mixing angles) which are left free by the set
of Class-I sum rules.
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The current-algebra f. = 0 sum rules can be
derived only by using PCAC. We will there-
fore study the self-consistency of the complete
set of equations only in the limit m~ = 0. We
realize that the superconvergence relations
can be derived without taking this limit. We
find, however, that the over-all consistency
of the saturation assumption requires rnzext
= 0 even if we consider only the superconver-
gence relations. This may mean that to the
extent that these relations give symmetry re-
sults, they do so only because of their connec-
tion to the algebra of currents. If this is real-
ly the case, we clearly have to consider all
our sum rules in the limit implied by PCAC
or by vector-meson dominance which are the
crucial links between the algebra of weak and
electromagnetic currents and the strong-inter-
action sum rules. Notice, however, that when-
ever the pion appears as an intermediate state,
its mass is not necessarily zero, and we con-
sider it as an additional physical quantity.

We now proceed to discuss a few specific
sets of sum rules which enable us both to dem-
onstrate our general conclusions and to pre-
sent those predictions which can be immedi-
ately tested by experiment.

(a) We first discuss the case of a pure IR
of SU(2)8 SU(2). We consider the set of t=0
sum rules for 7T-p scattering~ and assume that
the 7T and w intermediate states saturate the
sum rules. We solve the set of equations in
masses and coupling constants and find'

to mp=mn. The commutation relation [D~,Q,~]
= 5~~8 implies that the operators D' and S trans-
form according to the (—,', —,') representation of
SU(2) S SU(2). Consequently, for any IR (k, I)

((&, t) ID I(k, l)) =0. (4)

= tan0.
pplT ~plT

The general solution is

(5)

m '=m 2=m cos28+m 'sin 89
p (d

We conclude that if p and & (or p and ll, for
ill =0) are in the same SU(2)Ot SU(2) represen-
tation, (p, IDI+,) =0 and (p, IDIlT) =0 where the
subscripts denote the helicities. Equation (3)
then leads to the prediction of equal masses
for p, ~, and ll [Eq. (1)]. This is actually a
much more general result: If we saturate all
"pure" t =0 sum rules' for 7T-x scattering by
states forming an IR of SU(2) 8 SU(2), we find
that all matrix elements of D vanish. The mass-
es of all intermediate states are then predict-
ed to be the same as the mass of x and the sum
rules for 1=2 t-channel amplitudes become
trivial identities while the I=1 sum rules lead
to the ordinary predictions of the charge algebra.

(b) In order to study the case of a reducible,
finite representation we now allow the y rne-
son to contribute to the same set of 7T-p sum
rules. The solution is not unique and it depends
on a free parameter 0 which we define by

Pl Pal PPS 9
(d p

g '=4g '/m '=8/f '.
Q) p7T p7T7T p

(2)

4g 2 g 2 g 2 8
p7T7T +p7T pp7T

m ' cos'|I sin'9 f '
p 7T

(7)

While it is clear that Eqs. (1) and (2) do not
agree very well with experiment, it is inter-
esting to understand algebraically why we have
obtained such a solution. In order to do so
we notice that our saturation assumption is
equivalent to assuming that, at infinite momen-
tum, the h =1 components of p and ~ are in
the (—,', —,') IR of SU(2) R SU(2) while the h = 0 p
and ll a,re in (1,0) + (0,1). In this case, the ax-
ial charge Q„which is a, generator of the al-
gebra, connects p only to cu and 7T. The matrix
elements of the operator D~ between particle
states at infinite momentum satisfy'

lim P (nlD IP) =-—,'t(m -m )(nip IP). (3)j ~ 2 2

z p n 5
P ~QQ

If (n I
D'

I P) = 0 and (n I Q, ' I P) g 0, Eq. (3) leads

I cp,) = cos6 I (0, 0)) + sin9 I (—'„—,')),

I ~,) = -sin0 I (0, 0)) +cos6 I(—,', ~)).

Q, connects p, only to states in the (—,', —,') rep-
resentation while D connects p, only to (0, 0).

(8)

We immediately see that as g ~-0, 0-0
and ~p m ~ . The predictions for m

7T
and gp7T7T

are not affected by y since y contributes on-
ly to the transverse sum rules while 7T contrib-
utes only to longitudinal sum rules.

From the algebraic point of view the solutions
(6) and (7) can be understood in the following
way: The addition of y is equivalent to assign-
ing the h = 1 co and cp to orthogonal mixtures
of the (-,', —,') and (0, 0) IR's while p„p„and
7T are classified as before. We define
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We therefore find

(p, IQ, Iy, )/(p, IQ, I~,) =tan&,

(p, ID I y, )/(p, ID I&a,) =-cot8.

Equation (10) is identical to (5) and leads to
(7). Equation (11) together with (3) leads to
Eq. (6). The angle 8 that was arbitrarily in-
troduced in Eq. (5) is now interpreted as the
mixing angle between the (—'„—,') and (0, 0) rep-
resentations. Its experimental value is close
to zero, and the absence of the decay y -pn
therefore leads to the approximate equality
between mp and m~.

The degeneracy of m~ and mp was removed
in I by introducing the A, as an additional state
in the sum rules. The experimental value for
I'(p-llew) determined the 1T-A, mixing angle
(denoted by g in I) to be approximately 45' and
the components of the h =0, (1,0)-(0, 1) repre-
sentation of SU(2)@SU(2) to be 2 2In')+2 ~IA, '),
The mass formula obtained is consequently

—,'(m '+en ') =m '.
A, p

(12)

cos'6Im '+sin'Om '=m (i3)

where m~' is a weighted average of the m' val-
ues of the I= —,

' resonances. The actual contri-
bution of any one of these states can be deter-
mined only from the so far unknown decay rates
N„2*-N*(1236)+ lT. Substituting the experimen-

(c) Our third example is the set of all "pure'"
t=0 sum rules for mN-mN, ~N-nN*, and wN"

-pN*, where N* is the 2 resonance at 1236
MeV. If we saturate these sum rules by N and
N* only we find a unique solution in which m~
=mN* and all coupling constants satisfy the
usual chiral algebra [or SU(6)] relations such
as GA =5/3, etc.' We know, however, that
the saturation by one IR does not agree with
experiment and that many additional states have
non-negligible contributions. The mixing co-
efficients for N and N* can be determined from
the experimental weak, electromagnetic, and
pionic transitions. These indicate' that the

(1, ~) representation of SU(2) @SU(2) in-
cludes the "pure" N*(1236) and a mixed I= —,

'
state jocose IN) + sin6 IX)), where X includes
components from the P»(1400), D»(1530), S»(1550),
E»(1688), D»(1688), and S»(1700) I= —,

' nucle-
on resonances. We therefore obtain the follow-
ing mass formula:

tal values of mN and mN~ and' cos0 = 0.8 we
predict mX=1.64 BeV, clearly mithin the ex-
pected mass range.

(d) We next consider all t=0 sum rules for
n-5 scattering where 6 is a J+=0+,IC~=1+
state which may or may not be identified with
the observed narrom peak at 960 MeV. ' We
have only two such sum rules, one for the I=1
and one for the 1=2 t-channel amplitudes. The
only knomn particles that could contribute'0
are 1| and X'(960). The saturated sum rules
read

(14)

(15)

If I'(5 -nil) - 5 MeV (as is the case if 5 is the
960-MeV state) we find tllat 'g contr1butes less
than 2 p& of the sum rule (14). Equation (15)
then leads to m~ =mxo in strong support of
the assignment of the 960-MeV peak. The SU(2)
8 SU(2) classification then assigns 6 and X'
to (2, —,') while 11 is mostly in (0, 0). This allows
us to determine the sign of the g-X' octet-sin-
glet mixing angle. The sign is the one which
identifies the g as an almost pure ~~ quark
structure while X' is mostly $'6'+%%.

(e) Our last example is the set of t = 0 sum
rules for n-A, scattering. There are five sum
rules (including one of Class II) similar to the
five v-p sum rules. ' We assume that the sum
rules are dominated by the following states":
o' (J+=0+,ICG=0++) p, D (JR=1+ fCG —0++)
B (J' =1+,I =1 +). We use the A, and p
couplings and masses obtained in I, and find
a unique solution for the r-A, sum rules. The
masses of 0, D, B are predicted to satisf y

m fpg

p 0'

B D

(i6)

(i7)

The coupling constant relations are cumber-
some and cannot be directly tested. We mill
present them elsewhere, together with a detailed
discussion of the sum rules. At this point we
only remark that there are some vague indica-
tions for a, o-type resonance around the p mass"
which, if verified, will agree with Eq. (16).
The D particle is the isosinglet of the A, octet
(or nonet) and therefore will probably be found
in the 1.1- to 1.2-BeV region, not very far from
the B mass.

Additional applications and analysis of the
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t = 0 sets of sum rules may enable us to have
a better understanding of the mass spectrum
of the various resonances and of their chiral-
algebra classification. A particularly inter-
esting (and open) question is the role played
by the Class-II t = 0 superconvergence relations'
with respect to the determination of free mix-
ing angles of the chiral algebra. We hope to
return to this problem in a future publication.
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2By "all pure t = 0 sum rules" we refer to all sum
rules involving amplitudes which actually contribute to
the scattering at t =0. These include the charge-alge-
bra sum rules and part of the complete set of supercon-
vergence relations. We later refer to these as "Class-
I superconvergence rules. "

3This does not imply SU(2)SSU(2) invariance. There
are SU(2}SU(2) symmetry-breaking contributions to
the masses of the states. These transform according
to the (2, ~} representation and do not split the masses
in an IR.

4The first two superconvergence relations of V. de
Alfaro, S. Fubini, C„Rossetti, and G. Furlan, Phys.
Letters 21, 576 (1966), belong to the two classes de-
fined here. The I=1 sum rule for the amplitude A is
a Class-I sum rule (and corresponds to the difference
between two Adler-Weisberger sum rules for x-p scat-
tering). The I=2 sum rule for the amplitude B is a
Class-II sum rule since B does not contribute to t = 0
&-p scattering. [See also Eqs. (3)-(13) and the related
discussion in Ref. 1.]

5The explicit equations can be trivially obtained from
Eqs. (7a}-(13a) of Ref. 1 by setting@& =gT=O.

8The operator D was used by S. Fubini, G. Furlan,

and C. Rossetti, Nuovo Cimento 40A, 1171 (1965) in
deriving SU(3) mass formulas. See also, V. de Alfaro,
S. Fubini, G. Furlan, and C. Rossetti, to be published.

~The Class-II superconvergence relations for ~N*
mN* are inconsistent with this solution. The N-N*

sum rules were discussed by P. H. Frampton, to be
published, and H. F. Jones and M. D. Scadron, to be
published.

R. Gatto, L. Maiani, and G. Preparata, Phys. Rev.
Letters 16, 377 (1966); H. Harari, Phys. Rev. Letters
16, 964 (1966}; 17, 56 (1966). I. S. Gerstein and B. W.
Lee, Phys. Rev. Letters 16, 1060 (1966).

~The assignment J =O, I&~=1+ is the most prob-
able for this peak, if it is a genuine resonance. See al-
so R. H. Dalitz, in Proceedings of the Thirteenth Inter-
national Conference on High Energy Physics, Berkeley,
1966 (University of California Press, Berkeley, Cali-
fornia, 1967).

If the B(1220) meson exists it could also contribute.
We find, however, that for I"(B 6m}=10 MeV our pre-
dicted 6 mass changes only by 40 MeV. Needless to
say, there is no evidence, so far, for the decay B 6x.

~~This should really be regarded as a speculative ex-
ercise since the only state that is really known here is
the p meson. We present the results here mainly with
the idea of predicting the approximate masses of other
expected states.

~2See, e.g. , A. H. Rosenfeld et al. , Rev. Mod. Phys.
'39, 1 (1967), p. 21.

3In the cases considered here Class-II sum rules
have the following effect: (1) When the mp sum rules
are saturated by m, ~, and q the only Class-II sum
rule becomes a linear combination of the four saturat-
ed charge-algebra sum rules, and therefore adds no
new information. (2) When the A& contribution is added
to the ~p sum rules the Class-II sum rule becomes in-
dependent and predicts go=0, m~=mp. (3) In &N*

scattering the Class-II sum rules cannot be utilized
since the state ) X) of Eq. (13) is not fully specified.
If in Eq. (13) cos8 =1, the Class-II sum rules are not
consistently saturated (see footnote 7). (4) There are
no Class-II m6 sum rules. (5) The Class-II ~A& sum
rule fixes mg =mD [gq (i7)]
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