
Vor.uME 19, NuMBER 11 PHYSICAL REVIEW LETTERS 11 SEPTEMBER 1967

This state is clearly an eigenstate of the total number of electrons, and so is that of Eq. (2} with Eq. (7). When

y = 0, this state is equivalent to that of Yosida by replacing the electron operator by the hole operator.
~Using our wave function, Xo =p exp[-4/3Np~e7~] where p, is the usual cutoff energy (of order of the Fermi en-

ergy). This same expression was obtained by Heeger and Jensen (Ref. 2).
We define the susceptibility as )((&)= (8/BH)QB(ndy-ndy)) for all fields. At low field, a similar result is obtained

by Takano and Ogawa [Progr. Theoret. Phys. 35, 343 (1966)] by the usual Green's function method. However,
their result is different from ours by the factor m

8This critical field corresponding to the critical temperature of 10 K is twice that of Ref. 3. The reason for this
discrepancy between the two experiments is unclear.
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The lifetimes and polarizations of intrinsic recombination radiation from alkali-ha-
lide crystals at low temperature are interpreted in terms of two self-trapped exciton
states, one predominantly singlet, the other triplet in character. This is the first
strong evidence for the triplet assignment. The variation with crystal of the triplet-
state lifetime is attributed to effects of the different halogen spin-orbit couplings and
the varying degrees of axial relaxation in the self-trapped configuration.

Under high-energy excitation at low temper-
ature, pure alkali-halide crystals luminesce
with high efficiency. This luminescence has
been shown to arise primarily from intrinsic
radiative recombination of electrons and self-
trapped holes (Vy centers). ' ' The emission
spectra are closely related to those resulting
from excitation with light in the exciton absorp-
tion bands. 4 The term "self-trapped exciton"
appropriately describes the luminescent cen-
ter, which may be regarded simply as a ha-
lide-ion pair in a bonding excited state. The
(110) bond axis is evident from the polariza-
tion of the luminescence. '

Table I shows data obtained in this labora-
tory and elsewhere'~'~' on peak energies, po-
larizations, and lifetimes for self-trapped ex-
citon emission bands at liquid-helium temper-
ature (LHeT). Although extensive data exist
on intrinsic luminescence excited by ultravi-
olet light, '~' we have for consistency included
in Table I only data obtained with x-ray and
high-energy-electron excitation. Both 0 and
n transitions occur in general, the former with
short (allowed) lifetimes 7fm, the latter, at
lower energy, with longer (apparently forbid-
den) lifetimes 7'p~. This lifetime correlation
was evident in previous experiments on KI.'
The 0 transition has not been observed in four
of the crystals. Only RbI exhibits a third, pos-
sibly intrinsic, band of any consequence, and

it is relatively weak at LHeT. 3 The half-widths
of the bands in Table I range from 0.3 to 0.7 eV.

The experimental methods have been described, '
except for the lifetime measurements, ' these
employed standard electronic techniques to
detect luminescent decay after excitation by
a 15-MeV electron pulse (=20 nsec duration)
from the Naval Research Laboratory Linac.
The accuracy of T~~ was limited by instrumen-
tal resolution. Since the radiative efficiencies
are high at LHeT, the lifetimes will be iden-
tified with the reciprocals of radiative-tran-
sition probabilities.

We shall discuss states of the self-trapped
exciton in terms of those of a diatomic rare™
gas molecule. This analogy is appropriate
because of the close similarities between the
electronic configurations of a free rare-gas
atom and a free (unrelaxed) exciton, ' and be-
cause of the close experimental relationship
of the self-trapped exciton to the Vp center
(diatomic molecular ion). ' The ground state
is then (vgnp)'(wunp)'(wgnp)'(ounp)' 'Zg+, which
is unstable, the lowest self-trapped exciton
states are ~ ~ ~ (crunp) [o,„(n+1)s]'~'Zu+, which
are bound. ' It is evid. ent that the 7~ and the
polarization of the o transition are consistent
with 'Zu+ -'Zg+. For the m transition, the
variation of Ty~ with anion appears consistent
with 'Zu+ - 'Zg, for which multiplicity forbid-
denness is broken by mixing due to the halo-

652



VOLUME 19,NUMBER 11 PHYSICAL RKVIKW LKYTKRS 11 SEPTEMBER 1/67

gable I. Emission-band peak energies and lifetimes for self-trapped exciton transitions. Parameters relevant
to the analysis of the n transition are also shown; they are defined in the text. All energies are in units of eV.
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aPolarization not yet measured.
bData of Ref. 6.
cPolarization from Refs. 2 and 3.
dData of J. E. Eby, K. J. Teegarden, and D. B. Dutton, Phys. Rev. 116, 1099 (1959).
eSee, e. g. , R. S. Knox and N. Inchauspe, Phys. Rev. 116, 1093 (1959).

gen spin-orbit (s-o) coupling of 'TT character
into the Zu+ state. The validity of this mech-
anism is our present concern, particularly
with regard to the observed strong dependence
of my~ on the cation as well as the anion.

The IIu electronic configuration which mix-
es most strongly with 'Zu+ and thus makes
the largest contribution to the m transition will
in all likelihood be (opp)s(wunp)'(st)~(ognp)'
x[ag(n+1)s]. States mvolving the higher f or-
bitals can hardly contribute significantly. "
These 'Zu+ and 'II states, along with the two
states having the hole in the vpp and zap or-
bitals, are represented in Fig. 1 by the dashed
potential curves, which are schematic and
which omit exchange and s-o coupling. Figure
I is a composite configuration-coordinate di-
agram in which r~ and ~~ represent. changes
in the halide-ion separation and the cubic re-
laxation, respectively. In the limit of small
electron-hole interaction, the dashed curves

will be just V~-center potential curves. " The
'Zg+ ground state and the 3Z + and 'lI exci-
ton states with exchange and s-o coupling in-
cluded are represented schematically by solid
curves in Fig. 1. As shown, the two self-trapped
exciton states originate from the states asso-
ciated with the s-o doublet in absorption, ' in
the jj-coupling limit, these latter states cor-
respond to hole j va, lues of 2 or ~.'3

I et us now estimate the admixture of 'Ou
into Zu+. Under the s-o coupling Hso, the
actual wave functions tk) become the linear
combinations a(t)+b }s) and a(s)-b(t), where
(t) and }s) represent uncoupled sZu+ and 'll

functions, respectively. Hso can be diagonal-
ized to give cg' and 5 in terms of the matrix
element (s IHso }t) = s f and the energy separa-
tion Est of (s) and (t) at the equilibrium ra. '4

g is the s-o coupling parameter for the halide-
ion p's configuration; as is customary, the
measured & values for the p' configuration of
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FIG. 1. Schematic potential curves for self-trapped
excitons. The configuration coordinates ~~ and r~
measure departures from the perfect lattice configura-
tion due to cubic and axial relaxations, respectively.
Of the many possible states, only those relevant to the
discussion of the ~ transition are shown. The dashed
curves do not include exchange or spin-orbit coupling.

the free halogen atom will be used (Table I)."
Both Egg and a po rtion E$-E,-Ey~ of the

Stokes shift increase monotonically with axi-
al relaxation v~. As noted in Fig. 19 E~ is the
energy of the first exciton absorption band,
Ey~ is the emission energy, and E is that
part of the Stokes shift due to r~. A crude
though adequate estimate of E~g may thus be
obtained by simply setting Ezf =~(Ef-Ee-Ek~).
The factor ~ is chosen to make E~g roughly
consistent with V~-center absorption energies"
for crystals in which the triplet exciton gives
the largest Stokes shift and consequently has
an equilibrium r~ nearest that of the Vp cen-
ter. For KC1 we take E~ to be Wood's calcu-
lated exciton Stokes shift (cubic only)"; lack-
ing a better procedure, values for the other
crystals have been scaled from this one rough-
ly in proportion to E-center Stokes shifts. "

Eg g 9 and the resulting b' values are in-
cluded in Table I.

The spontaneous emission probability between
nondegenerate states Ik) and Im) is

= (4e'nE ~/Sk'c3)($ /g ')' I(k Ir I m) I', (1)

where n is the refractive index at E~~.' The

value of the effective-field ratio is in princi-
ple 1 & Jeff/$0& 2 and should vary little with
crystal; we set Jeff/)0=1 for convenience.
Only the singlet part b Is) of Ik) contributes
to the matrix element, since Im) represents
'Zg+. Using the 7~~9 EI~9 and b' from Ta-
ble I, ' Eg. (1) yields l(s lr Im) I . Its varia-
tion from crystal to crystal, if the model is
valid, should be slight compared with that of

Table I shows this to be the case. The
strong dependence of 7& on the cation is seen
to be accountable partly through the EI ~ in
Eq. (1) and partly through Est. It is inherent
in the model that the variations in Ep~ and

E~t for a given anion are largely due to vari-
ations in the equilibrium r~.2

For the allowed o transition, Eg. (1) gives
I(l Ir Im) I'~2x 10 " cm' for each of the five
crystals, where If) represents 'Zu+. The na-
ture of the orbitals on which our analysis has
been based would lead one to expect I(l I r I m) I

~
I (s Ir l~) I, which is seen to hold true gen-

erally.
It is thus apparent that, with reasonable val-

ues for the relevant physical parameters, the
relaxed-exciton model is consistent with the
measured lifetimes of the n transition and their
variation with crystal. There is presently no
indication that alternative mechanisms can
produce the large lifetime variations. One
such mechanism would have the transition al-
lowed but long lived because of a diffuse ex-
cited-electron orbital. "

Attempts to observe epr in the relaxed-trip-
let-exciton state are currently underway. A
full account of the present work will be pub-
lished shortly.
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The de Haas-van Alphen effect has been studies in spherically shaped crystals of nick-
el. The unusual angular variations in the frequencies arising from the &5 hole pockets
can be accounted for in terms of an interpolation scheme which includes the effect of
spin-orbit coupling. The sizes of the hole pockets depend markedly on the axis of spin
quantization, i.e. , on the direction of the applied magnetic field.

A self-consistent calculation of the ferromag-
netic band structure of nickel was recently
carried out' incorporating correlation effects
through the use of an intra-atomic Coulomb
interaction. This calculation was based on
a simple interpolation scheme for paramag-
netic transition metals and made use of sev-
eral parameters obtained from first-principles
augmented-plane-wave band calculations; use
was also made of the experimentally determined
magneton number as well as other experimen-
tal information such as the size of the [111]
"neck" in the copperlike sheet of the Fermi
surface as determined by the low-frequency
de Haas-van Alphen oscillations of Joseph and
Thorsen. 2 The limited nature of this experi-
mental information coupled with the uncertain-

ties inherent in the first-principles band struc-
ture prevented an exact determination of the
position of some of the energy bands near the
Fermi surface, and as a consequence the size,
shape, and even the existence of a number of
small hole pockets in the Fermi surface could
not be accurately ascertained. In this paper
we wish to present the results of further stud-
ies of the de Haas-van Alphen effect in spher-
ical samples of nickel and to discuss the rel-
evance of these results to the band structure.
Excellent agreement with experiment is found
when the original interpolation scheme is mod-
ified by readjusting certain parameters' and

by including the effects of spin-orbit coupling, '

this interaction leads to variations in the band
structure (and in the Fermi surface) which
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