INELASTIC NEUTRON SCATTERING IN FERROMAGNETIC METALS*

E. D. Thompson[†]

Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee (Received 14 July 1967)

The relative magnetic inelastic neutron scattering from spin waves and the continuum spin-flip band in a ferromagnetic metal is shown to depend upon the wave vector $\overline{\mathfrak{q}}$. In particular, the scattering from the continuum band vanishes as $q \rightarrow 0$, and the scattering from the spin waves vanishes as $q \rightarrow q_{\text{max}}$, the cutoff vector for spin waves.

The magnetic, inelastic neutron scattering from a ferromagnetic metal has contributions arising from both spin-wave excitations and the continuum band of spin-flip excitations. The former of these has been calculated in the long wavelength limit by Izuyama, Kim, and Kubo,¹ while the latter has been calculated by Elliott² in the molecular field or Stoner approximation. It is the purpose of this Letter to show that the relative contributions to the scattering depend upon the wave vector \bar{q} . In particular, as $q \rightarrow 0$, the magnetic scattering arises solely from spin-wave excitations with no contribution from the continuum band. On the other hand, as $q \rightarrow q_{\text{max}}$, where q_{max} is the cutoff momentum for spin waves,³ the spin-waves of momentum for spin waves,³ the spin-wave scattering vanishes and we are left with only scattering due to the continuum spin-flip band. This result also means that the magnitude of the scattering from spin waves has a \bar{q} dependence in addition to that arising from the form factor $F(\vec{k})$ and the thermal factor $(1-e^{-\beta E})^{-1}$.

The differential cross section for magnetic, inelastic neutron scattering with the scattering vector \vec{k} parallel to the magnetization is given by the relationship

$$
\frac{d^2\sigma}{d\Omega dE} = \frac{1}{2\pi} \left(\frac{g\gamma e^2}{2mc^2}\right)^2 \frac{|F(\vec{k})|^2}{1-\exp(-\beta E)} \left(\frac{k'}{k}\right) \chi_i^{-\frac{1}{2}}(\vec{q}, E), \quad (1)
$$

where E is the neutron energy loss, $\chi_{\widetilde t}^{^-+}$ is the imaginary part of the atomic susceptibility at the wave vector \bar{q} and energy E , and $\bar{q} = \bar{k}$ $-\vec{K}$, where \vec{K} is the necessary reciprocal lattice vector to bring \overline{q} into the first Brillouin zone. In the random phase approximation, '

$$
\chi^{-+}(\mathbf{\bar{q}}, E) = \chi_0^{-+}(\mathbf{\bar{q}}, E)[1 - I\chi_0^{-+}(\mathbf{\bar{q}}, E)]^{-1},
$$
 (2)

where

$$
\chi_0^{-+}(\tilde{q}, E) = \chi_{0Y}^{-+}(\tilde{q}, E) + i\chi_{0i}^{-+}(\tilde{q}, E)
$$

$$
= \frac{\Omega}{(2\pi)^3} \int d\vec{k} \frac{f_{\vec{k}} + f_{\vec{k}} + \tilde{q}f}{\Delta + \epsilon (\vec{k} + \tilde{q}) - \epsilon (\vec{k}) - E} \qquad (3)
$$

is the susceptibility in the Stoner approxima-

tion. In this equation, Ω is the atomic volume, $\Delta = nI$ is the band splitting, *n* is the number of Bohr magnetons per atom, and ϵ is the oneelectron band energy.

 $\chi_i^{-+}(\bar{\mathbf{q}}, E)$ appearing in (1) has two contributions, $\chi_{i1}^{-+}(\bar{q}, E)$ and $\chi_{i2}^{-+}(\bar{q}, E)$, which arise from spin-wave and continuum-band excitations, respectively. $\chi_{i1}^{-+}(\!{\bar q},E)$ is singular and arises where the conditions $\chi_{0i}^{-1}(\overline{q}, E) = 0$ and $I_{X_0}r^{-+}(\bar{q}, E) = 1$ are satisfied simultaneously. This generally restricts \bar{q} to certain values⁴ which in its simplest form means $q < q_{\text{max}}$. Provided these conditions are satisfied, then

$$
\chi_{i1}^{-+}(\vec{q},E) = \frac{n\pi\delta(E(\vec{q})-E)}{\Delta\{(\partial/\partial E)[I\chi_{0r}^{-+}(\vec{q},E)]\}_{E=E(\vec{q})}}.
$$
 (4)

Equation (4) has been given by Izuyama, Kim, and Kubo¹ in the limit as \bar{q} approaches zero for which the derivative in (4) approaches $1/\Delta$. The derivative depends on \bar{q} and, in fact, becomes infinitely large as $q \rightarrow q_{\text{max}}$,³ Hence,
 $\chi_{i1}^{-+}(q-q_{\text{max}}, E) \rightarrow 0$. To show this, we evaluate the derivative appearing in (4) using (3) and an effective-mass approximation. For a strong ferromagnet,

$$
\chi_{i1}^{-+}(\mathbf{\vec{q}},E) = n\pi \left(F^2/x^2F'\right)\delta\left(E\left(\mathbf{\vec{q}}\right) - E\right),\qquad(5)
$$

where $F' = dF/dx$, $F = 0.75{2x^{-1} + (1-x^{-2}) \ln[(1+x)]}$ $(1-x)$ }, and where the auxiliary variable $x = \delta E/$ $(\Delta' - E)$ with $\Delta' = \Delta + \hbar^2 q^2/2m^*$ and $\delta E = \hbar^2 q k_{\text{F}}/m^*$, half the width of the continuum band at q . The dispersion relation is given by $F = \delta E/\Delta$ from which we obtain $q/q_{\text{max}} = \frac{2}{3}F$. Figure 1, a plot of F^2/x^2F' vs q/q_{max} , shows the relative decrease of neutron scattering from spin waves with increasing q , arising from the susceptibility term alone.

The second contribution $\chi_{i2}^{-+}(\bar{q}, E)$ is nonzero in the energy spectrum of the continuum band for which $\chi_{0 i}^{-+}(\vec{q}, E)$ is nonzero. Here,

$$
\chi_{i2}^{-+}(\vec{q}, E) = \chi_{0i}^{-+}(\vec{q}, E) / D(\vec{q}, E),
$$
 (6)

FIG. 1. Reduction factor F^2/x^2F' , for scattering from spin waves as a function of wave vector \tilde{q} normalized to the cutoff wave vector.

with

$$
\chi_{0i}^{-+}(\bar{q}, E) = 0, \quad |y| > 1,
$$

= $\frac{3}{4}\pi (n/\delta E)(1 - y^2), \quad |y| < 1, (7)$

where $y = (\Delta' - E)/\delta E$ and where we have made the same assumptions in obtaining (7) as we have made in obtaining (5). The denominator $D(\bar{q},E)$ in (6) is given by the relation

$$
D(\bar{q}, E) = (1 - \Delta G / \delta E)^{2} + (\Delta \chi_{0i}^{2} + /n)^{2},
$$
 (8)

where $G = 0.75{2y + (1-y^2) \ln[(1+y)/(1-y)]}$. As \vec{q} – 0, $D(\vec{q}, E)$ – ∞ and the neutron scattering from the continuum spin-flip band vanishes. Figure 2 illustrates the effective reduction in this part of the neutron scattering compared with that calculated by Elliott. 2

While the detailed nature of these results depends upon the model, the general nature of the results does not. For we know that

$$
\frac{1}{2\pi}\int_{-\infty}^{\infty}\chi_{i}^{-+}(\mathbf{\bar{q}},E)dE=\tfrac{1}{2}n,
$$
\n(9)

and hence, that

$$
\frac{1}{2\pi} \int_{-\infty}^{\infty} \chi_{i2}^{-} + (\bar{q}, E)dE = \frac{1}{2}n(1 - F^2/x^2F').
$$
 (10)

The limit $F^2/x^2F' - 1$ as x and $\overline{q} \rightarrow 0$ is model independent; so χ_{i2}^{-+} must vanish identicall in this limit. On the other hand, for those \overline{q}

FIG. 2. The atomic susceptibility per Bohr magneton per unit of energy as a function of energy. The solid curves are calculated using Eqs. (6)-(9) of the text and the dashed curves are calculated using Eqs. (6) and (7) with $D(\bar{q}, E) = 1$. The dashed curves thus represent the susceptibility in the Stoner approximation and give the inelastic neutron scattering calculated by Elliott (Ref. 2). Curves a are calculated for $q/q_{\text{max}}=0.5$ and Curves b for $q/q_{\text{max}}=1.0$. The broad resonance displayed in b continues as q increases from q_{max} , the resonance moving slightly away from the bottom of the continuum band, becoming broader, and diminishing in amplitude. This resonance arises from the virtual spin-wave state lying in the continuum band. The band splitting Δ is one unit of energy and the Fermi energy is set equal to Δ for the purposes of this figure.

for which the spin-wave dispersion relation has no solution outside the continuum band, the denominator in (2) never goes to zero, χ_{i1} ⁻⁺ vanishes, and (9) must be satisfied by $\chi_{i2}^{-\dagger}(\bar{\bar{q}}, E)$. The possibility of a discontinuous change of χ_{i1} ⁻⁺(\bar{q} , E) with \bar{q} seems unlikely.

 ${}^{3}E$, D. Thompson, Ann. Phys. (N.Y.) 22, 309 (1963).

 ${}^{4}E$. D. Thompson, to be published.

^{*}Research sponsored by the U. S. Atomic Energy Commission under contract with Union Carbide Corporation.

TPermanent address: Case Western Reserve University, Cleveland, Ohio.

¹T. Izuyama, D. J. Kim, and R. Kubo, J. Phys. Soc. Japan 18, 1025 (1963).

 2 R. J. Elliott, Proc. Roy. Soc. (London) A235, 289 (l956).