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Recently, following a suggestion by Fubini
and Furlan, ' infinite-momentum limits of weak
and electromagnetic currents between one-par-
ticle states have attracted much attention.
The mathematical properties of these limits
have been investigated by Coester and Roep-
storff. ' According to these authors, the assump-
tion that one-particle matrix elements of cur-
rent algebras are saturated by one-particle
intermediate states at infinite momentum, a
suggestion particularly advocated by Dashen
and Gell-Mann, ' is incompatible with Lorentz
invariance unless an infinite sequence of res-
onances with arbitrarily high spin values is
involved. We wish to show that if such an in-
finite sequence of Regge-like recurrences is
taken into account, there do indeed exist non-
trivial solutions which are compatible with
Lorentz invariance.

Matrix elements at infinite momentum. —We
start with the following simple remark. Let
E~(x) be a vector or axial-vector current and

consider the matrix element

L = lim (P ',
¹ (E (0) iP N),

K K

where p~' and p~ denote the four-momenta of
the one-particle states of mass m' and m, re-
spectivelyy,

p ' = (~ ', p'+ wa); p = (u, p+ za).
K K K K

Here a is a unit vector pointing in the z direc-
tion. The symbols N' and N denote the rernain-
ing quantum numbers like spin and charge.
The states ~p, N) are obtained from states at
rest by means of a pure Lorentz transforma-
tion

iP, N) = U[L, (P)] lm, N)(mi~)'",

where L(p) is the transformation that takes
the vector m~ =(m, 0, 0, 0) to the vector p&.
This allows one to express the limit 1.~ as
a matrix element between states at rest:

L = lim, (m', N'IU[L (p ')L(p )]L (p )E (0) ImN).
(d (d K K V K

K~00 K K

The product L '(p„')L(p~) has a finite limit,
and furthermore,

The complex number q stands for q =q'+ig',
where q' and q' are the components of the mo-
mentum transfer q =p'-p in the x-y plane. We
represent the matrix E as a product

where aj" and a~ denote the two lightlige vec-
tors a&=(1,a) and a&=(1, -a). The limit of
the product L '(p ')L(p ) may be expressed
in terms of the 2x2 representation of the ho-
mogeneous Lorentz group as follows.'

m' 0
Z = iimL-'(P ')L(P ) =(m'm)-"'

Z =L '(v')qL(n)-

where the matrices L(m'), L(v) represent pure
Lorentz transformations in the z direction that
take the vectors m ', m to v', v, respectively,

v =(2m, ) [m, +m, (m, -m )a];
1 2 2 2 2

~'=(2m ) [m +m', (m -m' )a].
-1 2 .2 2 2-

(4)
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The matrix Q is given by

Note that these expressions involve the arbi-
trary parameter m, . The virtue of this decom-
position lies in the fact that the dependence of
R on the masses m, ' and m is contained in the
pure Lorentz transformations L(n') and L(&)
that are independent of the momentum transfer
q, whereas the matrix Q is now independent
of the masses. This invites us to reabsorb the
transformations U[L '(~)] and U[L(w)] in the
one-particle states with the result that

L"=a "(N If(q) IN)(2~)

(N'If(q) IN) =(2w) {m w' /m )
3 0 0 2 —'

x(~'N'
I U(q)a r"(0) I~N) (6)

f(q ) - U(q)a r "(0).

This correspondence makes sense only because
we have eliminated the dependence of the ma-
trix Q on the masses m' and m. We note that
the finite momenta n, m point in the z direction
and satisfy

v a =r'a =m, (6)

which relation determines the components of
n'', m in terms of the parameter m, .

Current algebra. —Let us for simplicity fo-
cus our attention on the conserved isovector
current Vi&(x), i=1, 2, 3. According to (6) the
infinite momentum limit of the one-particle
matrix elements of these operators are relat-
ed to three operators vi(qt) that act in the space
of the quantum numbers N. The assumption
that the usual local current algebra of the op-

%e have written the result in the form used
by Coester and Roepstorff' as a matrix (¹If IN)
in the space of the quantum numbers N that
clearly depends only on the transverse momen-
tum transfer qf = (ql, q2, 0). The above expres-
sion for L & incorporates the well-known re-
sult that the limits of the components E' and
E' vanish, whereas those of E' and E' are equal.
The above result is summarized in the corre-
spondence

IN) - IvN)(2')+ '(vr'/m, )'

erators V, &(x) when sandwiched between one-
particle states at infinite momentum is satu-
rated by one-particle intermediate states im-
plies' that

[v.(q), v (q )]=ie. v (q +q )

I orentz covariance. —Suppose now that a so-
lution of this algebra, i.e., the numbers (N'
x Ivi(q ) IN), is given. Can this solution be in-
terpreted as one-particle matrix elements of
a Lorentm-covariant operator ViI (0) accord-
ing to (6) '? The answer is that this is in gen-
eral impossible without getting into conflict
with I.orentz invariance. I.et us include in
the set N of quantum numbers the spin J of
the particle as well as its z-component M, and
let us denote the remaining quantum numbers
by g. The following two conditions4 must then
be imposed on the matrix elements {J',M', rI'

x I v;(q ) I J, M, q) to guarantee that they can be
interpreted as matrix elements of a covariant
operator V, (0) according to (6):

(J', M', ri'lv. (q ) IJ, M, rI)

ieiM'-M=(J', M', q' Iv.(R q ) IJ, M, g)e ', (10)
2 z

(J', M', g'Iv. (q ) I
J', M, rI)D (R), D (R)

t J' I'* J

v t=a R (J', M', g'Iv. (q ) I
J', M, q). (11)

V

Here R denotes a rotation by angle 6I around
the z axis, R is a rotation around the vector
k defined by Km =(k', k) and R =K 'RK. Equa-
tion (11) states that under the one-parameter
group of rotations R, ~R the matrix element
of vi(qf) transforms like the sum of a scalar
and the z-component of a vector.

Before we proceed to construct solutions
that satisfy these conditions, we wish to point
out that the quantities (N' Iv;(q ) IN) do not de-
termine the operator V2~ uniquely. In fact,
if V;~ is an operator whose matrix elements
satisfy the relation (6), then the quantity

V."= V."+i[~",G],

where G is an arbitrary Hermitean operator,
leads to the same matrix elements. This de-
gree of freedom is in fact a very welcome one,
since it allows one to prescribe the divergence
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of the field V t"(x) independently, for example,
by specifying that Vt~(x) be conserved or that
its divergence be dominated by the pion pole,
etc.

Representations of the current algebra. —In
the following we restrict ourselves to a sim-
ple, unrealistic model. More realistic solu-
tions will be presented elsewhere. Let us sup-
pose for simplicity that the isovector current
algebra is saturated by a set of baryon states
of isospin —,

' and spin values J„J2, ~ ~ ~ . In this
simple case the variable g takes only two val-
ues, q=+ —,'. If the solution is to be isospin in-
variant, we have

(O', M', q' I v. (q ) l J, M, q)

where 0 are the Pauli matrices. This expres-
2

sion does indeed satisfy the current algebra
(9) provided that

t t'
v(q )v(q ) =v(q +q ),

where v (qt) is an operator acting in the space
of the quantum numbers J, M. Furthermore,
in order that the operators V;~ be Hermitean,
we must require v(qt)~=v(-qt). We are thus
looking for a unitary representation of the Abe-
lian group in two dimensions that is compati-
ble with the requirements of Lorentz invariance
given in (10) and (11). Clearly, the one-dimen-
sional representation' v (qt) = exp(ix qt) is not
Lorentz invariant. In fact, the theorem by Coes-
ter and Roepstorff mentioned earlier amounts
in this simple case to the statement that v (qt)
must necessarily be an infinite-dimensional
and therefore reducible representation of (13).
A glance at the correspondence (7) invites us
to interpret v(qt) as the analog of the unitary
operator U(Q). Note that U(Q) does indeed com-
mute with a&Vt (0), which is in this case the
analog of the isospin operator ~02. This anal-
ogy leads us to the following consideration:
We note that the representation U(Q) of the Abe-
lian group of the matrices Q is in fact defined
on a much larger group, the full homogeneous
Lorentz group. The operator U(Q) represents

that particular highly reducible representation
of the two-parameter Abelian group that is in-
duced by the representation U(A) of the homo-
geneous Lorentz group, and it is precisely this
fact that is responsible for the requirements
of relativistic invariance given in (10) and (11).
We therefore expect to obtain a solution v (qt)
that is compatible with relativistic invariance
if we consider a representation u(S) of the ho-
mogeneous Lorentz group or, more precise-
ly, of its covering ScSL(2, C), and choose for
v (qt) the representation induced on the subgroup
of the matrices Q,

v(q )=u(Q).

This solution is indeed compatible with the re-
quirement (10), because the representation
u(S) at the same time induces a representation
of the group of rotations around the ~ axis with
the required properties. It is also compatible
with the condition (11) provided that the mass-
es of all particles involved are the same, and
we shall in the following assume that this is
the case, and put m, =m=m'.

The irreducible unitary representations of
the group SL(2, C) are well known. ' We restrict
ourselves to the principal series of represen-
tations which are labeled by an integer m and
a real parameter p. These representations
are reducible representations of the subgroup
of rotations and contain the spin values J = 2 Im l,
&lml+]. , &Iml+2, ~ ~ ~ . In order that the repre-
sentation contains a particle of spin 2, we choose
l m l = 1 and, furthermore, put p = 0 to simpli-
fy the calculation. This representation corre-
sponds to the infinite series of Regge-like re-

1 3 5 1currences of spin 2, & 2 " and isospin 2.
It is a straightforward matter to work out ma-
trix elements of the type (8', M'lu(Q) I J, M) for
this particular representation. ' If we restrict
ourselves to 4'=J = 2, we find

—,M'Iu(Q)12, M)
1 1

q~ 2m jq j'

where we have collected the four possible val-
ues M'=+2, M=+~ in a 2&2 matrix. If we in-
terpret this solution in terms of the convention-
al isovector form factors

(P', 2, M', q'iV. (0)lP, 2, M, q)=2o. (2m) (m i&a(u')'u(P', M')y F (t)+is q F (t)u(P M)
2
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we find that

(16)

That the four equations for the two unknowns
and F, are compatible of course reflects

the Lorentz invariance of our solution. The
simple solution just obtained is not expected
to be realistic for at least three reasons:

(1) We do not expect that the current Vf~ is
saturated by states of isospin 2 alone, but that
matrix elements with states of isospin 2, in
particular the (2, -', ) resonance are present.

(2) The algebra of currents should probably
be enlarged to include axial currents as well
as currents associated with generators of SU(3).

(3) Even if we restrict ourselves to the sim-
ple model containing only states of isospin 2,
there still remains the problem of finding solu-
tions for a nondegenerate mass spectrum. If
such solutions exist, they do not show the sim-
ple dependence on the momentum transfer ex-
hibited by (16). Note that the solution (16) cor-
responds to a right-hand discontinuity in the
t plane of square-root character which is cer-
tainly too simple if the conventional assump-
tions concerning the analytic properties of form
factors are correct. These points will be dis-
cussed in a forthcoming paper, together with
a more detailed analysis of the role played by
the group SL(2, C) introduced in this Letter. '

We are indebted to Dr. V. Gorge for numer-
ous discussions and to Professor A. Mercier
for reading the manuscript.

*Work supported in part by the Swiss National Sci-
ence Foundation.

S. Fubini and G. Furlan, Physics 1, 229 (1965).

F. Coester and Q. Roepstorff, Phys. Rev. 155,
81583 (1967).

R. F. Dashen and M. Gell-Mann, in Proceedings of
the Third Coral Qables Conference on Symmetry Prin-
ciples at High Energy, University of Miami, 1966, ed-
ited by A. Perlmutter, J. Wojtaszek, E. C. G. Sudar-
shan, and B. Kuryunoglu (W. H. Freeman @ Company,
San Francisco, California, 1966).

4The condition (10) can be found in Ref. 2, whereas
(11) resembles the angular momentum condition of
R. Dashen and M. Gell-Mann, Phys. Rev. Letters 17,
340 (1966). Note that an earlier version of the present
paper contained the erroneous statement that the con-
dition (10) alone guarantees Lorentz invariance.

5It has been shown by E. H. Roffmann, to be publish-
ed, that all finite dimensional irreducible representa-
tions of the current algebra lead to a superposition
of terms with a momentum dependence of this form.

6See, e.g. , M. A. Naimark, American Mathematical
Society Translations (American Mathematical Society,
Providence, Rhode Island, 1957), Ser. 2, Vol. 6, p.
379.

Various techniques for the evaluation of matrix ele-
ments of this kind have been proposed in connection
with noncompact symmetry groups of the type SL(n, C).
See, e.g. , C. Fronsdal, in Proceedings of the Seminar
on High Energy Physics and Elementary Particles
(International Atomic Energy Agency, Vienna, Austria,
1965).

After the completion of this work, we realized that
solutions based on unitary representations of SL(2,C)
had been proposed earlier by Dashen and Qell-Mann,
Ref. 4, and by S. Fubini, in Proceedings of the Fourth
Coral Gables Conference on Symmetry Principles at
High Energy, University of Miami, January 1967, ed-
ited by A. Perlmutter and B. Kurgunoglu (W. H. Free-
man @ Company, San Francisco, California, 1967).
To our knowledge, however, no explicit solutions have
been presented. Finally, we wish to mention that the
solution described in this Letter is closely related to
a representation of the electromagnetic current pro-
posed by A. O. Barut and Hagen Kleinert, Phys. Rev.
156, 1546 (1967), based on the use of noncompact dy-
namical groups.


