
Vo~UMa 19,NUMsaa 10 PHYSICAL REVIEW LETTERS 4 SEPTEMBER 1967

~E. H. Lieb, Phys. Rev. Letters 18, 692 (1967).
2Z. H. Lich, Phys. Rev. Letters 18, 1046 (1967).
B. Sutherland, Phys. Rev. Letters 19, 103 (1967).
E. H. Lieb, Phys. Rev. Letters 19, 108 (1967).

~C. N. Yang and C. P. Yang, Phys. Rev. 150, 321

(»66).
6C, N. Yang and C. P. Yang, Phys. Rev. 150, 327

(1966).
7B. Sutherland and C. N. Yang, to be published.
F. Y. Vfu, Phys. Rev. Letters 18, 605 (1967).

EXACT SOLUTION OF A MODEI OF TWO-DIMENSIONAL FERROELECTRICS
IN AN ARBITRARY EXTERNAL ELECTRIC FIELD

B. Sutherland and C. N. Yang*
The Institute for Theoretical Physics, State University of New York, Stony Brook, New York

and

C. P. Yang
Ohio State University, Columbus, Ohio

(Received 1 August 1967)

This paper summarizes the main features
of the exact solution of the model discussed
by Yang, ' which is the last of a series of gen-
eralizations'~3 of Lieb's solution' of the iee
problem.

Integral equation. —We can choose

5)0,
i.e., g ~ 1 without loss of generality.

To find the partition function, one first con-
siders (Y7). The solution of this equation is
such that as N-~, the points zj=Hexp(ipj)
=exp(ip') (j = 1, 2, ~ ~ ~, rn) arrange themselves
along a smooth curve C in the complex z plane.
The curve C is symmetrical with respect to
the transformation z —z*. Denote the two ends
of the curve C by Z and Z* with Z in the upper-
half complex plane. The number of z&'s in any
interval dz along C is NP(p')dp'. Let f be such
that along C,

dfldp' = p(p')

with f=0 at the midpoint of C. Then

p' = (-i lnH+ 2') —f e(p', q') P(q')dq',

(2)

(3)

which is identical in form with the integral
equation (II 6a), except for the difference of
the path of integration.

where 8 is a function defined by Yang and gang. '
Notice that (3) reduces to (II 3) of Ref. 5 when
JJ= l.

Equation (3) defines f as a function of po when
z is continued analytically away from C. Dif-
ferentiation with respect to p' gives

2» =1+J'C(seys ')(po, qo)&(qo)gqo, (4)

For given end points Z and Z*, (4) in gener-
al has a unique solution. Substitution of the
solution into (3) yields the function g, where

2ng = 2'—i lnH.

The value of g at the end point Z is known since
that of f is known at that point. We have, in
fact,

2'�(Z)=
a ~(1-y)—i inH,

which is the generalization of (II 6b).
The Curve C is defined by those points z at

which

-Im2mg = lna

(6)

(7)

between the end points Z and Z*.
The integral equation (4) and the relation

(6) are best studied after a transformation p,-~ which was explicitly given in (I21) for the
cases b, & —1 (A. region), 6 = -1, and —1 &6 & 1

(p. region). [One writes po for all p in (121).]
For the present problem, we need similar trans-
formations in the additional cases of 6 =+1
and 1 &h. For

a =+1,
1 +2sn

exp(ip') = (8a)

-in
e -e

1 &6, exp(ip') = . , b, = coshv, v) 0. (8b)v-zn-e +1

The end points Z and Z* are mapped in the
complex n plane into (5+i@) and ( b+i4)—
For given b and 4, the integral equation (4)
then becomes a nonsingular Fredholm equation.
Evaluation of p, and theng from (3), yield through
(6) the values of y and H. Thus y and H are
real functions of the real variables b and 4.
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FIG. L. Schematic diagram of constant-x and -y contours in 5-4 plane. Dotted lines are constant-x contours
with x values given. Solid lines are constant-y contours with y values given in circles. In the A, and p. regions
all values of x, y satisfying —1-x - 1, 0 -y —1 are attained in the 5-4. diagram shown. In the v region, only those
values of x and y satisfying the further condition y -x are attained in the b-4 diagram shown. The diagram for
6=-1 is similar to that of the p region, except that the label p at the corner should be changed to read 4 =2. The
diagram for 4=+ 1 is similar to that of the v region, except that the label v at the corner should be changed to
read 4 = 2 and the wavy left-side boundary should be pushed to 5 = -~.

The region of b and 4 of interest is shown in
Fig. 1 with some important special points lo-
cated.

Evaluation of the thermodynamic function. —The

two terms of (Y6) can be separately evaluated.
It can be proved that the bigger of the two is
given by an integration along a path D which
is not necessarily C, giving

-F /N'kT= , in'+-, lnH-+ ~l ln g '- — . , p(p )dp,
hy a D 1-n exp(C ')

where D starts from Z*, ends at Z, and passes the real axis in the z plane at a point z =ay
Results. —Detailed investigation of (4), (3), (6), and (9) leads to the complete thermodynamical

properties of the model. We summarize the most important features below:
(A) The thermodynamic function Fx&(T,x, y) is defined for all T on the square -1&x & 1, -1 &y & 1.

It satisfies the symmetry conditions (Y18). It is a continuous function of T, x, and y and concaves
upwards in the double variables x and y. The horizontal and vertical fields h and v are the deriva-
tives of Fx&. N 2dFx& = sdT+hdx+ vdy—(Y15).

(8) Near y = 1, x 0+1, Fx& can be expanded and the first two terms are as exhibited in the follow-
ing equation:

N F = —2x5+kT(l y) 1-2 —
2 in/-+ 2 in[2m(1-y)] ——, lncos2mxj+ ~

xg
(10)

Thus as y —1, x = fixed c +1, v -+~ logarithmically.
(C) Fx& is analytic in T, x, and y everywhere in the open square 0&T &~, —1«x &1, —1&y &1,

except for (i) the points

x —y b, -1.
(ii) the points

x=y=0 -1~6 &1.

and (iii) the points

x=y =0, 6 (-1.
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(D) The value of N 'E at the singular points (11)-(13)is
xy

N E (x x)= —26 1«6.
xy

1 k T dn coshn c—os(2 p, -4,}
xy ' 2 8 p. —~ cosh(nn/'2 p) , coshn —cos40

-2 1 n -1
E (0, 0) = 26 -kT-Q( —1) in[(nq+n-1)(nq+n+1) ], 6 = -1;

1

(14)

(15)

-A,n
E (0, 0) = 16 -kT -1~ 14 ~ e sinh[n(X-4 )], 6 &-1.

xy ' 2 2 2 0 ~ n coshnA.
1

In these formulas A. and p, are defined as in I, and 40 is defined so that n =f40 corresponds to exp(iP )
—

~
—1.

40 1+e ge
e +g

0&4 &A
0 7 (18a)

EP,
ico 1+ye

e
gp,

e +g
0&40& p, ; (18b)

V4 'ge -10—

g-e
v&4 07 (18c)

(18d)

(18e)

Notice that in (18c), it follows from 2coshv=q+1/g-$ that g)ev.
(E) For 1 «6, along the line x=y, the function N 'E has the constant value -~&6. In the neigh-

borhood of this line Fxy has one tangent plane for x =y+ 0 and a different one for x =y-0, so that

h= -v =+2kTv1

atx=y +0. The line x= y is thus a groove for the function F».
(F) For -1 «b, &1, the function N 'E (x, y) has a singularity only at x =y =0, if at all. In the neigh-

borhood of this point,

N 'E (x, y)=N 'E (0, 0)+ [x'+y'-2xy sin(4 w/2p, )]+higher order terms
xy ' xy ' 4 cos(4,n/2p) 0

Higher derivatives than the second with respect to x and y sometimes become +~ as x and y -0.
(G) For 6 &-1, the function N 'Ex (x, y) has a conical singularity at x=y =0, at which Exy does

not have a unique tangent plane. In fact the single point x =y =0 corresponds to a region in the h-v
plane. The region is bounded by the closed curve (—2A «4 «2A):

(20)

k = kTZ(4), —

v = kTZ(A -40+ 4),

where Z(4) is an odd function of 4, analytic for all real 4, and

(21)

(22)
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1
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It is easy to prove that

and

Z(A. -C) =Z(X+4),

Z(4+41.) = Z(C ),

dZ/d4 = constx the elliptic function nd(constx 4).

(24)

(26)

(H) The singularity discussed in (E) aPPears in N Fkv(k, v) as two Plane segments: (i) For 8+v ~ 0,

(ii) For k+ v ~ 0,

[-1+@exp(2h/kT)j[-1+7}exp(2v/kT)j~ ii), N 'F =-2 '6-k-v.
hv

[-1+gexp( —2k/kT) j[-I+i}exp(-2v/kT) j ~ rig, & 2& = -2 'g+k+ v.
hv

The remaining two parts of the h-v plane have a functional value for N 2Fhv forming curved F -h-v
surfaces. The complete Fhv vs h-v surface is thus like a roof with two plane parts joined by two
curved ends.

(I) The singularity discussed in (6) appears in the N Ekv vs k-v surface as a flat bottom bound-
ed by the curve (21)-(22). The whole surface is in the shape of an infinite bowl with a flat bottom.

(J) The special case b =0 (i.e., p=am) is simply solvable since the function 8 is zero. The result
gives

2k / 1 . 1 1 1 1 . 2v
2 sinh = -~ g —— sin—my+ g+ —cos—my tan —wx, 2 sinh —= same with x —y.kT ( g 2 g 2 2

' AT

Previous models. —The F model and the KDP model solved'~' by Lieb and Sutherland correspond
to the cases q= 1 and q= ( ', respectively. Wu's models corresponds to taking the following limit
in our considerations:

5 =0, g-~, h+v =0, h+e =negative constant.
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