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more detailed numerical study of the classi-
cal anisotropic models is in progress.
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The structure of the large magnetic moments
associated with certain first-row transition-
metal atoms dissolved in palladium continues
to be of interest. These giant moments have
been reported by Gerstenberg' for Mn, Fe,
Co, and Ni dissolved in Pd, by Cranglem for
Fe in Pd, and by Bozorth et al. ' for Co in Pd.
The systematic variation of the size of the
moment with electron concentration in the host
has been studied by Clogston et al. for Fe in
Pd-Rh and Pd-Ag alloys. ' Geballe et al. have
studied the magnetic moment found when Fe
is dissolved in Pd-Pt solid solutions. ' Recent-
ly Low and Holden have investigated by inelas-
tic neutron scattering the distribution of mag-
netic moment in the solvent for Fe and Co dis-
solved in Pd. '

The following general picture has emerged
from this work. At the site of each iron atom
substitutionally present in the Pd lattice, there
exists a magnetic moment of 3-4 pB. Surround-
ing this site, the Pd atoms are polarized for

0
a distance of about 10 A. The nearest-neigh-
bor atoms to the iron impurity carry a moment
of about 0.07 p,B. This moment falls off expo-
nentially with distance at such a rate that the
total moment of the complex is about 10 p,B.
The giant moment thus consists of a rather
small spin density spread out over many at-
oms surrounding the impurity.

In a metal the disturbance in electronic struc-
ture created by an impurity atom is general-
ly of very short range, the first zero in the
oscillating Ruderman-Kittel- Yosida range func-
tion coming approximately at r/a = 0.36/v"s
for a spherical Fermi surface containing v

electron or hole states per atom. Here a is
the lattice constant for a fcc metal. In a free-
electron approximation this range can be con-
siderably extended by the introduction of a
short-range, momentum-independent interac-
tion between the electrons. '~' However, the
modified range function can be made to agree
with experiment only by assuming unrealistic
values oi v or of the interaction strength. '

We wish to describe here the effect of con-
sidering not only the intra-atomic exchange
interaction between electrons on the same at-
om but also important effects due to interatom-
ic exchange between electrons on nearest-neigh-
bor atoms. We shall assume that the princi-
pal response of Pd to a weak spin-dependent
perturbation is confined to the heavy-hole band

lying at point X' in the Brillouin zone and con-
taining approximately 0.18 hole states per atom. '

For simplicity we consider first the case
of a band made up of nondegenerate atomic or-
bitals and write the Bloch functions in the form

@-(r)=N "'Q exp(ik r )e(r-r ).k a a a

The extension to the case of degenerate orbit-
als appropriate to Pd has two important effects
which will be discussed later. The & compo-
nent of spin on atom a is written

S(a) = (S/W)Q exp(-iq. r )S,
q a q'

where in the representation given by Kit. (1)
Sq has the form

s-=Q 5- - - --,[C-, +C- -C-, *C- ]. (3)q, k'-k, q+ K k'& k& k'& k&
'
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The momenta k', k, and q all run over the first
Brillouin zone, K is a reciprocal lattice vector,

and Ckz*, Ck~ are creation and destruction op-
erators for state k with spin 0. In the random
phase approximation it is easy to show that

k'
C-, *C- -C-, *C- = -[(klv(r)lk)+g(kl'IV(r r ) Ilk')(C-, "C- -C-, *C- )]k'& k& k'& k&

1'1 1 2 1'& 1& 1'& 1& E- -E-'k' k
(4)

where -v (r)oz is some spatially varying spin-dependent potential, V(r, r2) is the screened Coulomb
interaction, and fk is the Fermi function for energy Ek. Using Eq. (1) we have approximately

(klv(r)lk')= —Q exp[-i(k-k') r ]f8+(r-r )v(r)8(r r-)dr
N a a a a

We also have

1
N k'-k'

(kT'IV(r r )llk')= —&-, - -, - - Q exp[-ik (r -r )]exp[-il'(r -r )]exp[il (r -r )]
2 N 1'-1 k'-k+K a d b d c

abc
&& f8*(r -r )8*(r -r )V(r r )8(r -r )8(r -r )dr dr . (7)a 2 b & 2 1 c 2 4 1 2

From the wide variety of terms included in (7) we retain those for which a =d and c =b. We have
then

(kl'IV(r r ) IIk')= —5-, - -, - -Q exp[-i(l'-j, )~ (r -r )]1 2 N 1'-1)k'-k+ K b b d

x f8~(r -r )8*(r -r )V(r r )8(r -r )8(r -r )dr dr
2 b 1 2 1 b 2 & 1 2

-1
N 1'-1,k'-k+ K 1'-1'

S =[v +J S]$
q 'q qq q' (10)

We can expand Jl 1 in the form J+J'Zl
where J is the intra-atomic exchange energy,
J' is the interatomic exchange energy, and Zq
=+exp(iq. ra) with the sum on ra running over
near neighbor sites to r, =o. For small q, Zq
=Z-(ag)2, where Z is the number of nearest
neighbors. This choice includes terms of or-
der I and I in Herring's notation. " We
omit terms of order I obtained with c =a and
b =d, and terms of order I obtained with b

=c =d, which do not depend explicitly on the
momentum transfer 1'-l. Although these terms
give important contributions to the q= 0 com-
ponent of the exchange interaction, we have
been able to show in simple cases that their
momentum dependence is strongly suppressed.
We will assume, therefore, that these terms
do not make a large contribution to the momen-
turn-dependent exchange enhancement discussed
below.

From Eqs. (3), (4), and (9) we obta. in

where
1 k' k5~

q N —k'-k q+KE- -Z-'
kk' k' k

S =[-,'v +g,Z, S, ]
mq mq m' mm'q m'q mq'

where m refers to sections of the Brillouin
zone where the wave functions are composed
of atomic orbitals of predominately one sym-
metry type m. For small q as required later
we take $q ——&gmq to be independent of m. This
would be true for instance of spherical or cy-

These are the usual equations for the momen-
tum-dependent susceptibility $- and the exchange-q
enhanced spin density S&, except that we have
now in effect introduced a momentum-depen-
dent exchange interaction Jq.

For the more realistic case of & degenerate
orbitals appropriate to Pd, Eq. (10) should be
replaced by the expression
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lindrical Fermi surfaces. We also make the
reasonable assumption that Q J,- = A J'-
independent of m'. J thus includes Hund's

m mm'q q
q

rule exchange terms which are smaller than
the exchange self-energy terms. " If we now
chose vmq-—v&, we return to Eq. (10) with Sq
=~mSm-, .

For a uniform applied magnetic field H, v (r)
=g p,BII and the susceptibility per atom is giv-
en by

2g P~ P(E F)
1-(J+J'Z)p(E )' (13)

since

dj
S(a) = zv(0)Qf ~ exp(-iq. r )2&'a1J)

q q

(14)

where 0 is the atomic volume. For r~ great-
er than a lattice constant, the integral in Eq.
(14) depends principally upon small values of
q. For strong exchange enhancement, the in-
tegral can be evaluated approximately to give

S (a ) = v (0) ~ap (E )
—e—xp (-~ /0 ),

0
a

where

(15)

For Fe dissolved in Pd, the neutron diffrac-
tion measurements can be fitted approximate-
ly with o'=3.3 A. With the lattice constant a
=3.88 A, (&/a)2=0. 72. For a spherical band

the density of states of one spin at the Fermi
energy. The susceptibility is enhanced by the
factor n =tl-(J+ZJ')p(EF)] '. In Pd metal
the low-temperature susceptibility is about
12 states/eV atom. " Judging by the augment-
ed-plane-wave calculation of Freeman, Fur-
dyna, and Dimmock, ' the unrenormalized state
density is about 1 state/eV atom. Very approx-
imately, therefore, o. =10.

If the system is perturbed by a potential lim-
ited to the atom at r0 = 0, v& = v (0) and we have

of holes,

1 d'$ ) ],

2a' dq' F 12 ak

P ( F) 480 2/' (17)

Vuillemin and Priestly find & =0.06 hole states
in each heavy-hole pocket at the three nonequiv-
alent points X of the Brillouin zone. If J'=0
and n =10, this corresponds to (o'/a)'=0. 14
or o = 1.5, much smaller than the observed
value. To fit the experimental value we require
p(EF)J'=0.058. This is a large value of J'
in the sense that Zp(E F)J' = 0.7 is the largest
contribution to the exchange enhancement fac-
tor n. If p(EF) =1 state/eV atom, J'=0.06
eV, a value compatible with the magnitudes
of the integrals I quoted by Herring for 3d
atomic orbitals. " If the actual energy surfac-
es of Pd in the vicinity of X could be repre-
sented by a set of concentric cylinders, (d2$&/
dq')0=0 and p(E F)J'=0.072 to fit the experi-
mental range parameter.

We conclude that the interatomic exchange
J' in Pd is an important source of exchange
enhancement of the spin susceptibility and of
the long-range spin polarization produced by
an Fe or Co impurity.

The author appreciates several informative
discussions with W. F. Brinkman and D. B.
McWhan.
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IN AN ARBITRARY EXTERNAL ELECTRIC FIELD
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We generalize the recent solution of a model of two-dimensional ferroelectrics to in-
clude the addition of an arbitrary horizontal and an arbitrary vertical electric field and
show that the general problem when all six vertex configurations have different energies,
and when arbitrary horizontal and vertical electric fields are present is mathematically
equivalent to the above problem.

Recently Lieb' solved the two-dimensional
ice problem exactly. There have been three' 4

further papers generalizing this solution, of
which Sutherland's problem' includes all the
others as special cases. We show in this pa-
per a further generalization to include a hor-
izontal electric field.

Consider a two-dimensional, cyclic N ~N
square lattice with periodic boundary conditions.
Two hydrogen atoms are bonded to each site.
These bonds are represented by arrows. The
ice condition is imposed which demands that
two and only two arrows must point away from
(and toward) each lattice site. We then assume
that there are configurational energies at each
site as in Fig. 1.

We further assume that each bond has a unit
electric dipole moment, and that there are pres-
ent a vertical electric field v and a horizontal
electric field h. Each vertical arrow contrib-
utes an energy -v(+v) if it points upward (down-
wards). Each horizontal arrow contributes
-h(W) if it points to the right (left).

First, consider the case

FIG. 1. The six configurations at each lattice site.
Inward-pointing arrows are omitted in this figure.

Lieb' has shown that the value of y defined
for each horizontal row of vertical spins is
the same for all rows, because of the ice con-
dition. We consider first the problem of fixed
y with no vertical field. Denote by

(h, y) = -Nk T ln(partition function)
hy

the free energy for such a system. In exact-
ly the same way as in Refs. 1-4, the present
partition function can be formulated in terms
of the trace of a transfer matrix.

The largest eigenvalues of the matrix can
be found in the same way as in these referenc-
es, following Lieb's method. ' We thus obtain

E (h, y) = -Nk T ink, ,

E =E =+E E =E =-E =-6 =--5.1 2 t 5 6 3 4

Define
g = exp[2e/k T], ri= exp[f')/k T],

H = exp[2h/k T], V = exp[2v/k T],

y =1-2[fraction of vertical spin

pointing downwards],

y =vertical polarization.

(1)
where

(2)

The conditions that are satisfied by (p, ) are

m )' 1+H'exp[i(p, +p.)]-2m exp(ip. ))
exp iNp. = 2 Z

(i =1, 2, , m),1+H'exp[i(p +p.)]-2ba. exp(ip. ) f
/kg


