
QQLUME 19,NUMBER 10 PH YSI CAL RE VIE%' LETTERS 4 SEPTEMBER 1967

EXACT RESULTS FOR THE ONE-DIMENSIONAL, ANISOTROPIC
CLASSICAL HEISENBERG MODEL*

Wheatstone Physics Laboratory, King's College, London, England
(Received 24 July 1967)

We obtain the zero-field partition function and correlation functions of the one-dimen-
sional, anisotropic classical Heisenberg model exactly and find similar results for an
anisotropic "planar" spin model. The isotropic and the anisotropic cases have greatly
different low-temperature behavior.

Although the one-dimensional, spin-~, an-
isotropic Heisenberg model has been intensive-
ly studied, the partition function and correla-
tion functions of the model have not yet been
obtained exactly for general anisotropy and
temperatures. In this Letter it is shown that
such results can be simply derived for the an-
isotropic classical Heisenberg model.

The Hamiltonian for the classical model is
written as

X=- +2J
i=1

Z
l=o m=-l

(2)

where A~~ are the eigenvalues of the integral
equation

f C(8 p i8 p )+ (8 gp )d~ /4&

(8,y ),

and d2 is the element of solid angle sin0, d0,dy2.
The kernel of Eq. (3) is

C(8%, 8 V )

&&[s. s. +tanhp(s. s. +s. s. )], (1)
sz 1+1' z~ a+1& zy z+ly '

where szx=sin8icosyz, siy=sine~sinpi, s~
=cos8i, tanhp, =Jr/Jll=—y, g-0, and sN+1=-sl
(corresponding to cyclic boundary conditions).
Following the method' used to evaluate the par-
tition function of the isotropic model, we can
write the partition function of a ring of N an-
isotropic spins as

where h= iK—/cosh', l, =0, 1, 2, ~, and Iml
«l. The corresponding eigenvalues are the
radial functions

.l.=i je (h, cosh'. ).ml ml

In the thermodynamic limit, only the largest
eigenvalue contributes to Eq. (2). Thus

1
lim —lnZ = ln[ je (h, cosh', )].

00

This expression reduces, in the limit p-~,
to ln(K ' sinhK) in agreement with previous
results. '&' For the classical Ising model (p,

=0) we have

(7)

lim —lnZ = ln[ je ( iK, 1)-].
l

N-
(8)

A high temperature series for the partition
function (7) and a perturbation series about
the isotropic result in powers of 1—y can both
be derived from the standard expansion of the
radial function in terms of modified Bessel
functions. The low -temperature asymptotic
expansion for the energy per spin of the clas-
sical Ising model is

(E/2J )--1+K i+ —'K 2++K ~+ ~ ~ ~ (9
ll

This result is simply obtained from the form-
ulas given by Sips. ' At low temperatures the
behavior of the specific heat of the classical
Ising model differs considerably from that of
the isotropic model. '

The zero-field spin-spin correlation functions
can also be calculated in terms of the eigen-
functions (5) and eigenvalues (6). The final
results (for N large) are given below:

= expK[s. s +tanhp, (s s + s s )], (4)
1g 2g lx 2x ly 2y

where K=2J~/kT. It may be readily shown
that the normalized eigenfunctions are the an-
gle spheroidal wave functions'

1 1

(8, p) =2'A
l

'(h)Sl
l

(h, cos8)e™,(5)

(s. s. )= Q (Z /Z ) D,@),
l odd

(s. s. ) =(s. s. )
Zg gX

(z /~ ) Z(h),
E odd

(10)
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where

D, (h)=J -'1i. '-[f' s (h, q)s (h, ~)~ ~]', (12)

Z (h)=A

x [f' S (h, q)S„(h, q)(1-q2)'"dry]',

and i p j. The self-correlation function (i =j)
are

(14)

(15)

X= —P 2J' [tanhps. s.
J iz i+i&i=1

+ (S. S'. + S. S.
cx f+ lx 1p t+lg (17)

where tanhp= Ji/J&. For this model the eigen-
functions are the same as in Eq. (5), with h

=K/coshp and K = 2J~/kT. The eigenvalues

p(h) =1i«-' f ' y', (q)S„'(h„vl)dpi, (16)

and P~(q) is the I egendre polynomial of order
2. It follows immediately from Eq. (16) that
F (h) satisfies the inequality -2 &+(h)
the isotropic limit &(h) =0.] Fo»arge ~i-j~

and T &0 the correlations (10) and (ll) decay
exponentially.

Using fluctuation relations, the zero-field
parallel susceptibility is found from ihe cor-
relation functions (10) and (14) and the perpen-
dicular susceptibility from the correlation func-
tions (11) and (15). The nature of the divergence
zn kTy~~ at low temperatures is determined by
the behavior of A»/BOO-A. „. It is found' that
A.„and A00 have the same asymptotic expansions
as T —0 for 0 &y &1. Thus kTX

~
has an expo-

nential-like divergence for 0«@&1. For the
isotropic case kTyt~ -1/T.

The eigenfunctions and eigenvalues for p, &0
are exactly similar to (5) and (6) except that
Eq. (6) has a factor of (-l)~. It is interesting
to note that the case y= -& provides a solution
for the "nearest-neighbor" dipole-dipole inter-
action in one dimension. Antiferromagnetic
properties are obtained by putting K equal to
—tKI.

In order to extend the range of anisotropy,
. it is convenient to define the Hamiltonian

are
.l.

=& 7e;; (h, -~ sinhp).ml imil (16)

Hence, the partition function for X large is
given by

1
lim —lnZ =ln[je (h, -i sinhp)],00

while the correlation functions are formally
the same as Eqs. (10), (11), (14), and (15).
The low-temperature expansion for the ener-
gy of the transverse model (p =0) is'

(E/2J )--1+K '+ —'K '+~K '+ ~ ~ ~ (2

The divergence of kryo as T -0 is determined
by the behavior of A.»/X«-A. ». It is found that
when p=0, kTy&™l/Tas T-O.

Similar results can be derived for the aniso-
tropic, "planar, " classical Heisenberg model
vrith a Hamiltonian

N
$C= —Q 2J [s. s. +tahn$s. s. ],x ix zan~ sp 'E+ 1 p

(21)

where +i&=cosy; and siy=sinpi are compo-
nents of a two-dimensional unit vector, tanhg
= J&/Jx=y, $~0. The eigenfunctions for this
model are the Mathieu functions' cern (y, -h')
and sem+1(y, h'), w—hile the corresponding
eigenvalues are the radial functions i™Mcm(1)
x(g, -ih) and i +41s 1( )($, -ih), where
m =0, 1, 2, ~ ~ ~, h=K/2coshg and K=2J&/kT.
In the thermodynamic limit,

—ins +ac &"(g, -fh). (22)

l 2m
+ f ce—'(y, -h') cos2ydrp.

2m' 0 0 (23)

The zero-field susceptibility kTgx (obtained
from the correlation function &sfxsjz)) has an
exponential-like divergence as T -0 for 0 «y
&1. When @=1, kTyx-1/T. ' This behavior
is exactly similar to that of kTy~~ given above.

Although we have assumed cyclic boundary
conditions, it is possible to derive the proper-
ties of a finite open chain of N+1 spins. A

Expressions for the correlation functions, sim-
ilar to those given above, can be readily found.
For example,

&( . )'& =1-&( . )'& = -'
ZX 'EP
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more detailed numerical study of the classi-
cal anisotropic models is in progress.

*This research has been supported in part by the
U. S. Army through its European Research Office.
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RANGE OF A STATIC SPIN PERTURBATION IN PALLADIUM

A. M, Clogston
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The structure of the large magnetic moments
associated with certain first-row transition-
metal atoms dissolved in palladium continues
to be of interest. These giant moments have
been reported by Gerstenberg' for Mn, Fe,
Co, and Ni dissolved in Pd, by Cranglem for
Fe in Pd, and by Bozorth et al. ' for Co in Pd.
The systematic variation of the size of the
moment with electron concentration in the host
has been studied by Clogston et al. for Fe in
Pd-Rh and Pd-Ag alloys. ' Geballe et al. have
studied the magnetic moment found when Fe
is dissolved in Pd-Pt solid solutions. ' Recent-
ly Low and Holden have investigated by inelas-
tic neutron scattering the distribution of mag-
netic moment in the solvent for Fe and Co dis-
solved in Pd. '

The following general picture has emerged
from this work. At the site of each iron atom
substitutionally present in the Pd lattice, there
exists a magnetic moment of 3-4 pB. Surround-
ing this site, the Pd atoms are polarized for

0
a distance of about 10 A. The nearest-neigh-
bor atoms to the iron impurity carry a moment
of about 0.07 p,B. This moment falls off expo-
nentially with distance at such a rate that the
total moment of the complex is about 10 p,B.
The giant moment thus consists of a rather
small spin density spread out over many at-
oms surrounding the impurity.

In a metal the disturbance in electronic struc-
ture created by an impurity atom is general-
ly of very short range, the first zero in the
oscillating Ruderman-Kittel- Yosida range func-
tion coming approximately at r/a = 0.36/v"s
for a spherical Fermi surface containing v

electron or hole states per atom. Here a is
the lattice constant for a fcc metal. In a free-
electron approximation this range can be con-
siderably extended by the introduction of a
short-range, momentum-independent interac-
tion between the electrons. '~' However, the
modified range function can be made to agree
with experiment only by assuming unrealistic
values oi v or of the interaction strength. '

We wish to describe here the effect of con-
sidering not only the intra-atomic exchange
interaction between electrons on the same at-
om but also important effects due to interatom-
ic exchange between electrons on nearest-neigh-
bor atoms. We shall assume that the princi-
pal response of Pd to a weak spin-dependent
perturbation is confined to the heavy-hole band

lying at point X' in the Brillouin zone and con-
taining approximately 0.18 hole states per atom. '

For simplicity we consider first the case
of a band made up of nondegenerate atomic or-
bitals and write the Bloch functions in the form

@-(r)=N "'Q exp(ik r )e(r-r ).k a a a

The extension to the case of degenerate orbit-
als appropriate to Pd has two important effects
which will be discussed later. The & compo-
nent of spin on atom a is written

S(a) = (S/W)Q exp(-iq. r )S,
q a q'

where in the representation given by Kit. (1)
Sq has the form

s-=Q 5- - - --,[C-, +C- -C-, *C- ]. (3)q, k'-k, q+ K k'& k& k'& k&
'
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