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A beat frequency in the oscillatory magnetoresistance of zincblende HgSe is interpret-
ed as arising from the inversion-asymmetry splitting, which is shown to be about 0.007
eV at the Fermi level appropriate to 1&& 10is electrons/cm~.

The space group of the diamond lattice has
an inversion symmetry operation which requires
that E(k) be twofold degenerate for all k. The
zincblende lattice results from replacing the
two group-IV atoms of the diamond lattice ba-
sis with one group-III atom and one group-V
atom (or a group-II and a group-VI atom), and
the inversion symmetry is lost. If the zincblende
material has a finite spin-orbit splitting, E(k)
will no longer be twofold degenerate at a gen-
eral value of k. Although the theoretical exis-
tence of this inversion-asymmetry splitting
has been recognized for some time, ' the small
size of the splitting has made it difficult to ob-
serve experimentally. Recently, Robinson'
reported results of cyclotron resonance on P-
type InSb which, he argued, required the inver-
sion-asymmetry splitting for interpretation.
In this Letter we propose that the Shubnikov-
de Haas (SdH) measurements of Whitsetts on
n-type HgSe quite strikingly demonstrate these
zincblende splittings. We first rule out anoth-
er possible explanation of Whitsett's results
and then show how to find the orbits which give
the SdH frequencies. An interesting situation
occurs when the magnetic field, B, is paral-
lel to a (100) direction. The (100) zero-field

orbits are quenched by magnetic-field-induced
splittings in a fashion which is the reverse of
magnetic breakdown. By comparing the SdH
frequencies with those computed from the the-
oretical E vs k we find values of the inversion-
asymmetry splitting for HgSe.

Whitsett's results show that the conduction-
band cross-sectional area is only weakly de-
pendent on the direction of B with respect to
the crystalline axes, as expected for a band
with a minimum at k=0. However, at electron
concentrations of -1X10"cm ' and higher,
a beat frequency is found for B along all direc-
tions in the (110) plane except (110). These
effects are reproducible from sample to sam-
ple and we have verified Whitsett's results
in our laboratory.

Although the details of the HgSe band struc-
ture have not been conclusively established,
it is expected that the conduction band was ei-
ther p-like I', symmetry as o, -Sn or s-like
I', symmetry as InSb, and it is possible to treat
these two cases together. Kane has found the
energy for either a l, or I, band to be

E+ =E ' + (g /2 pyJ y g g ' + b M +c L ')y

+ (b2-2c2)(L-M-N)f, (k) + &2abPf, (k), (1)
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where

f (k) (k 2k 2+k 2k 2+k 2k 2) jk2
1 x g x z p z

f (k

=[k (k k 2+k k +k k )-9k k k ]'2k
X g X Z P Z X g Z

E' is the conduction-band eigenvalue resulting
from the diagonalization of the Hamiltonian
which includes the k p and the largest spin-
orbit interaction terms between an s-like (I,)
and P-like (I;+I;) basis. a, k, and c are nor-
malized coefficients which give the admixture
of s- and P-state basis in the eigenvector cor-
responding to E'. (At k = 0 for a I', band, a = 1
and 5 =c = 0, while for a I", band a = 0, 5 = V"-,'
and c = +a ~ In either case there is rapid admix-
ing of the s and P components off k=0 for small-
gap materials such as HgSe. ) A', L, M, N,
L', and P (Kane's B) are parameters which
describe the interaction between far-removed
conduction- and valence-band edges and the
s- and P-like bands.

E' is spherically symmetric and therefore
the only angular dependence of E+ comes from
the terms f,(k) and f~(k). The term f,(k) adds
a cubic warping to the energy surfaces and the
term f,(k) gives the inversion-asymmetry split-
ting (P =0 for the diamond lattice). For small
k the produce ab is proportional to k and the
splitting is proportional to k'. For a I'8 band
there is also a splitting term linear in k which
we omit, since for Fermi energies much larg-
er than the inversion-asymmetry splittings
it has the same symmetry as the p or k~ term.
The relative importance of these terms could
be decided by measuring the E or k dependence
of the splitting. The fact that the beating is
seen only in the higher concentration samples
suggests that the k~ term is more important.

The higher band coefficient (L M N) is pos---

itive for Ge and InSb and is expected to be the
same for HgSe. 2c~ is greater than b' and thus
the coefficient multiplying f,(k) is negative.
If L-M-N is sufficiently large the warping can
cause the maximum cross-sectional area per-
pendicular to k~ to occur off km=0 for k~ il (111)
or (100). (We use ka as the direction of B.)
In this case a local minimum in cross-section-
al area occurs at k~ = 0, and for 8 in these di-
rections the two extremal areas give rise to
two SdH frequencies which add together in the
conductivity to give an average-frequency term
modulated by a beat-frequency term. In prin-
ciple, then, the warping term could explain
the orientation dependence of the beating in
HgSe. However, a quantitative examination
reveals two reasons for rejecting this expla-
nation. First, to get extremal areas off k3 = 0
the warping must be 3 to 6 times larger than
in the other diamond and zincblende semicon-
ductors, but the warping is found to vary slow-

ly from material to material in this semicon-
ductor family. The second and more convinc-
ing argument is that the required warping caus-
es more than a 20% difference in the sum-fre-
cluency periods between B along (111)directions,
while Whitsett observed less than a 7% varia-
tion at maximum and usually only a 3% varia-
tion. For these reasons we reject the warping
as the explanation of the beating and turn our
attention to the inversion-asymmetry splitting
term.

Figure 1 shows the constant-energy contours
of the split bands in the k, =0 plane for k3 or B
parallel to (100), (110), and (111). The splitting
vanishes for k along the (111)and (100) direc-
tions. The case for B along (111)is uncompli-
cated: There are two unambiguous orbits and

areas and each contributes a SdH frequency.
For the other two directions it is not clear which
are the proper orbits and Fig. 1 certainly does
not suggest that two extremal areas arise for
B along (100) and only one for B along (110),
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110

pZG. ]. constant-energy surfaces with inversion-asymmetry splitting for k3= 0, with k3 along t001l, t11ol, and

t111l directions.
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as demanded by the beat-frequency pattern.
Before tackling this difficulty we look at the
size of the zincblende splitting needed to give
the observed beat frequencies. With the aid
of a computer two values of k are found from
Eq. (1) for a given Fermi energy, EF, and or-
ientation, 8, and then the angular integration,
—,
' pk~'(EF, 8)d8, is performed to give the areas
of the sections shown in Fig. 1. The details
of this computation, which uses energy band
parameters which are known for HgSe and val-
ues typical of Ge and InSb for the remainder,
will be given elsewhere. We find P to be about

6 units of 8'/2m, or -2 x10 "eV cm' for a
X", conduction band and twice as large for a
I', conduction band. With 1 X10" electrons/cm'
(EF =0.13 eV), the maximum splitting of the
bands (k II (110)) is -0.007 eV. Kane has esti-
mated that this splitting might be 0.1 eV at the
Fermi level for 10" electrons/cms in InSb.
With only this for comparison, the size of the

HgSe splitting seems reasonable, and we re-
turn to the problem of finding the proper orbits.

First, for simplicity we drop the nonparabol-
icity and warping from Eq. (1) and write a 2

x 2 Hamiltonian'.

5&d o ~ B yh2

H = + + „ [(o k —o k )k k + (a k -cr k )k k + (cr k -o' k )k k ],2m~ 2)B) 2m@ xy yx xy yz zy yz zx xz zx' (2)

where the 0's are the 2x2 Pauli matrices and kF is the radius of the Fermi sphere if y =0. We have
included a spin term with Zeeman splitting ~s. The third term in Eq. (2) is invariant under the sym-
metry operations of the zincblende lattice but not invariant under inversion. The parameter y equals
v2abpm~/8' and has the significance that yEF is the maximum splitting at the Fermi energy, EF,
The Hamiltonian in Eq. (2) has eigenvalues, for 8 =0,

5'k2 yS'
(3)

For a finite magnetic field we regard k as the operator kk=p+eA/c, where p= iRV a-nd A is the vec-
tor potential. The components of k now no longer commute (see below) but we shall ignore the com-
mutator in the term of order y which is already small. In order to deal with the three directions of

of interest it is convenient to express Eq. (2) in terms of k and o components of a coordinate system
in which B is parallel to k, and lies in the (110) plane':

k =2 '"(kl cos8-k2+k sin8),

k =2 '"(k cos8+k +k sin8),

k = -k sin0+k cos8,
z 1 3

where 8 is the angle between k, and kz. The same transformation applies to the o's. If Eq. (2) is
transformed and k, set equal to 0 the following are found:

8'A' 8+ 0 yS (k, '-k ')
B ii (100): H = „+ + „(o.,k2-erg, )

8'k' 8+ o yh
B ll(110): H= + + g,k,

(2k '-k ')

(2 ~f2

B II (111): H = + +,— cr, k,
(3k 2 k ) tt'] )'~2 (k 2+k 2)

-g) 2 (oP,—oP, ) .

For B along (111)we have already argued that a semiclassical method based on Eq. (3) is reasonable,
giving two slightly differing SdH frequencies. For the (110) case, Eq. (5) shows that H is diagonal
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and the eigenvalues are those of

yf2k2 yh2a, , k,
(2k '-k ') k(u s

2 '2

These equations can now be treated semiclassically. The orbits in this case trace out equal areas
and thus contribute only one SdH frequency. This is in agreement with the experimental result.

For B (~ (100) the situation is more complicated. We call the second part of the Hamiltonian H' and
wish to transform to a representation in which H is diagonal. In matrix form,

yh' (k, '-k, ') . 0
2m*k 2 —(k~+ik2)

(k,-ik, )
0

If we ignore the fact that k, and k, do not commute, and write k, + ik, =k exp[sip], we can diagonalize

Eg. (7) by means of the unitary transformation

(8)

where X =2 '/'exp[i(-, 'y--,'v)]. With k =kF, this gives

yh2 (k,2-k,2)

2m+ 2

In transforming the first term of H, however, we must consider the commutation relation [k» k, ]
=eB/inc. We use th'e creation and destruction operators for harmonic oscillator wave functions,

C
1/

a = (k +ik),

which have the property a ta =n, where n is the order of the harmonic-oscillator wave function. We
now define e~(((' as the operator n "'at, valid for large n, and e ~@ as an "'. While e~V' and e ~9'

commute with each other they do not commute with n,' in fact, ne~+ =e~&(n+1). Using this we trans-
form the first two terms of H and combine with Eq. (9) to obtain

a'k' yk-' (k, ' k,')-
2m+ 2m+ 2

k((d -(d )
C S
2

R(QJ -(d )c
2

g2k2 yam (k 2 k 2)

2m 2m* 2

(10)

where cv =eB/m*c is the cyclotron frequency.c
We notice that terms of order nS~C, h&vc, and
ynScuc have been kept, but terms of order yhmc
have been kept, but terms of order yS&c have
been dropped. If the more general terms from

Eq. (1) had been used, these would replace
Nk'/2m* in Eq. (10) and S(((/ -(ds) would be
replaced by the cyclotron energy and spin split-
ting appropriate to the Fermi level.

579



VOLUME 19, NUMBER IO PHYSICAL RKVIK%' LETTERS 4 SEPTEMBER 196?

Thus we see that at zero field the orbits for
B II (100) cross as in Fig. 1 and trace out equal
areas. However, unlike the case of B Ii (110),
there is a coupling between the orbits at finite
fields and if this is large enough the electrons
follow the outer and inner orbits of Fig. 1 and
there are two extremal areas and two SdH fre-
quencies, as observed.

Close to the crossover point the Hamiltonian
of Eq. (10) is similar to that which Blount uses
in his treatment of magnetic breakdown. ' He
writes

k v
H= (11)k ~ V2

where v =8 'V'yE, evaluated at the crossover
points, and 6 is a small perturbation which
keeps the bands from crossing. In the phenom-
enon of magnetic breakdown a sufficiently strong
field induces transitions across the gap A. Our
situation is, in a sense, just the opposite of
magnetic breakdown. The quantity —2K(&uc-&u~)
takes the place of 6, and we do not have a ze-
ro-field energy gap which is jumped by the mag-
netic field but a field-induced energy gap which
forces the electrons to change from their ze-
ro-field orbits. Blount's results can be inter-
preted in terms of a 6-induced switching co-
efficient Q', or probability of jumping between
6=0 orbits at the points of close approach,
which is given by Q'=1-exp(-s'), with s'=2vbPKc/
[eB ~ (v, xv, )]. For our case s' becomes nh(vc
-&us)/4EFy, i.e., the ratio of a magnetic split-
ting at the Fermi level to the maximum inver-
sion-asymmetry splitting.

As discussed above, we find REF =0.007 eV
for n=1&10" cm 3. At 10 ko, the region of
magnetic field where the beating is first observed,
the cyclotron energy at the Fermi energy is
slightly greater than 0.002 eV. The g factor
is negative for both I', and I", conduction bands
and this enhances the reverse breakdown effect
by adding the spin splitting, =0.001 eV, to 8&
Thus s' is about 0.3. Actually, if s were quite
large we could be sure that reverse breakdown
would be complete. However, the prediction
is for an incomplete breakdown. Such a situ-
ation can be analyzed in terms of a Pippard-
type network. %e shall not go into details but
the result is an amplitude function,

a(B) =2(exp(-s')-[I-exp(-s')]cos(kco/4eB)j'-I,

modulating the average period, where e is the
maximum area difference in Fig. 1(a). If s'
is small all that results is a slight reduction
in amplitude with a period Sme/nac, or 4 times
the expected beat period. As s' increases nodes
develop (at s'=0.16) and then more nodes, un-
til for s'- ~ the spacing of the nodes is 2'/
+he. This model thus predicts nodes in the
present experimental situation, but not of the
frequency we at first expected. Physically,
these longer beat periods correspond to inter-
mediate orbits; thus the small-s' beat period
would correspond to beating Ao, the zero-field
area, AECH in Fig. 1, againstAD+ —,'Ot, which
would result from an electron which switched
at two junctions but not at the other two, (i.e„
orbit ABCH in Fig. 1).

It should be noted that experimentally a com-
plete period was not observed for the (100) di-
rection, and that minima rather than nodes
were sometimes observed. Therefore, it is
possible that the partial breakdown is occur-
ring. However, it would also seem that the
condition for reverse breakdown to be complete,
i.e., the magnetic splitting to be of the order
of the inversion-asymmetry splitting, would
tend to invalidate the %KB-type arguments which
go into the standard treatments of magnetic
breakdown. Thus the orbits we are consider-
ing never get far away from each other as they
would in a metal. It would be beneficial if more
exact methods could be employed, such as pos-
sibly solving the coupled equations in Eq. (2)
exactly.
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