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A Quctuation theory of the intrinsic critical velocity of a superfluid near the lambda
point is developed in analogy with the droplet model of condensation of a supersaturated
vapor. For the superfluid, vortex rings play the role of critical droplets in homogene-
ously nucleating transitions to states of lower superQow. A quantitative estimate is in
reasonable agreement with recent experiments on helium.

Recent experiments by Clow and Reppy' on
the superf low of helium near the lambda point
seem to imply the existence of a critical ve-
locity essentially independent of the shape and
dimensions of the container. ' This intrinsic
critical velocity varies approximately' as

v (T)=u [1 (T/T )]' —~ (T-T ),c c A.

where uc =380 cm/sec. We will present a the-
oretical argument indicating that vc(T) is pro-
portional to:he superfluid density, ps(T). In
combination with the observed result'

(2)

with A = 2.40, our arguments yield (1) with a
constant I& of correct order of magnitude.

Our basic assertion is that a nonzero super-
fluid flow must be regarded as a metastable
state with properties analogous to those of a
supersaturated vapor. For a given macroscop-
ic sample of the metastable phase, there is
a finite probability per unit time for homoge-
neous nucleation of the stable phase. But for
a sufficiently small superf low (or supersatura-
tion), this probability rate is too small to be
observable; so the system appears stable.
Conversely the critical superf low (or super-
saturation) is achieved when the probability
of nucleation becomes appreciable within ex-
perimental times. Such an analogy has been
sketched previously by Vinen and developed
in greater detail by Iordanskii. ' Our approach
and analysis is close to Iordanskii's in impor-
tant respects but differs in other significant
ways.

To discuss superfluid helium we assume that
the relevant states of the system can be described
by a complex-values quasilocal continuous ord-
er parameter g(r). The a priori probability
that the system will be found in a state g(r) is
proportional to a Boltzmann factor exp[ E Q(r) f/
kBT]. The various stable and metastable states

[&/&P(r)]Fly(r)j =0.
C

This equation is just the Landau-Ginzburg equa-
tion (or its generalization) which is known to
describe a current-conserving superfluid hy-
drodynamics in which vorticity can occur but
is quantized. Vortex rings consistent with these
expectations have been observed by Rayfield
and Reif. '

Secondly, note that a vortex ring has just
the topological properties needed to nucleate

correspond to local minima of the effective-
free-energy functional & (P(r) ). The statisti-
cal fluctuations appropriate to an isothermal
canonical ensemble will be visualized as a con-
tinuous random motion of the system point P
through the function space, the vicinity of any
point being visited with a frequency proportion-
al to the Boltzmann factor.

Consider the superfluid in a state close to
some (~ locating a relative but not absolute
minimum of F@}.To pass continuously from

gm to a neighboring minimum, say (~', of low-
er free energy, the system point must move
through regions of higher free energy and low-
er statistical weight. The least improbable
fluctuation which can carry the system from

gm to /mal corresponds to the lowest saddle
point of + Q j on paths from P~ to (~i. The
"barrier" height ~ of this saddle point, re-
lative to the minimum at gm, determines the
rate at which the metastable state decays. On

general grounds the lowest saddle point is ex-
pected' to describe a state Pc(r) which is close
to the metastable state g~(r) almost everywhere
but which contains a single localized fluctua-
tion. For a supersaturated vapor this fluctua-
tion represents a liquid droplet just large enough
to nucleate condensation, but for a superfluid
we argue that it must be a vortex ring.

In the first place, the saddle-point criterion
requires that gc (r) be a stationary point of Ii (t/&]:
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t, = ~(ii ,')/4mR, --
where s'= (h/m) is the vorticity, and a is the
radius of the vortex core assumed to satisfy
(a/R)'«1. If the ring moves to the left in the
rest frame, the energy in the laboratory frame
is

E=E -P v
0 s' (6)

a transition from a state, say pk(r) =A exp(ik r),
of uniform superf low at velocity vs = (8/m) Ikl,
to a similar state pkI(r) with one less wavelength
in the length L of the (periodic) container and

correspondingly lower superfluid velocity es'
= (h/m)(k —2w/L). This is illustrated schema-
tically in Fig. l. Initially (a,) the magnitude
of g decreases locally within a (relatively small)
region. Next, (b) Ig I vanishes identically at
one point. Such a zero of lgt is a topological
necessity if an over-all change of phase differ-
ence is to be accomplished continuously. The
probable form (c) of the critical saddle point

gc(r) is a ring of unit vorticity for which the
change of phase passing around the container
through the center of the ring is 2n. less than
the phase change obtained along any similar
path passing outside the ring. ' Finally, in (d)
and (e) the vortex ring expands, lowering the
free energy again. If it is subsequently anni-
hilated at the walls, the order pars. meter g
loses one wavelength across the whole system.

For an initial quantitative estimate of the
nucleation rate we assume that vortex rings
near critical size may be described by the clas-
sical hydrodynamical formulas. Although test-
ed by Rayfield and Reif' for T = 0.2T~, we ex-
pect these expressions to yield an overestimate
of ~ and hence of the critical velocity, since
they assume incompressible flow outside a small
vortex core and thus neglect variations of the
amplitude I/i which may well be important near

Suppose, as in Fig. 1, that the superfluid
flows to the right with velocity vs, and consid-
er a vortex ring of radius R. Since Eq. (3) is
time independent, the critical ring must be
stationary in the laboratory frame; this result,
however, also follows from free-energy con-
siderations. In the rest frame of the fluid (de-
noted by subscript zeros) the energy Eo and

velocity v, of a classical vortex ring are deter-
mined by the radius:

= 2p ~'R(q-~4), q = ln(8R/a),
0 s
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where the momentum p, is determined by

vo =dEO/dpo = (dEo/dR)(dpo/dR)

From (7) one finds Po ~R' in accord with clas-

FIG. 1. Cross sections of the surfaces of constant

phase y = arg$(r} illustrating schematically the

successive stages in the nucleation of a critical vor-
tex.ring (c) and its subsequent expansion. Surfaces
for y =n7t and(n+g)7( are shown as solid liney and

dashed lines, respectively; the extra surfaces,
shown as dots reveal further detail; open circles
denote the first vanishing of I g I and the centers
of the vortex cores. tCylindrical symmetry about

a central axis is presumed. ] The labeling indicates
the different total phase changes obtained on pas-
sing through or outside the ring.
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valid to leading order in (a/R)'. To deduce
a critical velocity from this, recall that the
nucleation rate per unit volume, f, must be
of the form

f=f exp(-AF/k T),

where f, is the characteristic rate for micro-
scopic processes. Iff exceeds some minimum
observable laboratory frequency, fr, the su-
perfluid velocity vz must exceed a critical ve-
locity determined from (9) and (10) as

p, (T)k'(n =') (n-~4)

c 16mm'k T ln(f /f )

Now the characteristic frequencies of process-
es occurring on an atomic scale are of order
5X10" sec ' as determined, for example, by
the speed of sound and the atomic diameter.
Since the number density of helium at T& is
2X1022 cm ', we obtain the estimate f, = 10
cm ' sec '. It is reasonable to take fL, as,
say, 0.1 cm ' sec ', which gives ln(f0/fr. )
=83. Note that an error of a few factors of
10 in f, or fr would alter the calculated vc by
only a few percent'

Near T~ we may combine (ll) with (2) to ob-
tain (1) with the consta, nt

&p k'(n ')(n ~4)--
c 16n m'k T ln(f /f )B

= 224(q —4)(g —~) cm sec (12)

Now q = 1n(8R&/a) depends implicitly on vc through
(5), which may be rewritten for the radius of

sical theory. Thus E =E(R) has a maximum
at R =Rc determined by

(dE /dR) —v (dP /dR) =0.
0 R=Rc s 0 R=Rc

Evidently Ec =E(Rc) is the critical barrier height
Vortex rings larger than Rc lower their

free energy by expanding (and slowing down)
while smaller rings tend to collapse. Compar-
ison with Eq. (7) shows that (8) is solved by

v0 =v0(Rc) =. vs, which proves our assertion
that the critical fluctuation is stationary in the
laboratory frame.

Our final estimate for the free energy of the
critical fluctuation is

P K

the critical vortex as

R = (q ——,')A /4m
C c

where Ac = 2n'/kc is the wavelength appropri-
ate to the critical flow velocity. As might have
been guessed, this is also roughly the magni-
tude of R~. Far below Tc one may suppose
that the core radius is a= 4 A in accord with
the atomic dimensions. ' For deviations (T~
-T) of from 1 to O. l%%uo of T~, this leads to q
= 6.1 to 7.3, and thence &c = (4-7)X 10' cm sec
However, near T~ we should rather expect that
the core radius will be approximately equal
to the correlation length $(T). This we expect,
by comparison with critical phenomena in oth-
er systems, "to vary as

(14)

0
with v=3 and g, =2 A. With this estimate for
a, the ratio R/a should be roughly constant
near T& with a value of about 10." This final-
ly yields

u &1500 cm sec
C

(15)

the inequality serving to recall that, for the
reasons explained, we still expect this value
to be an overestimate. In fact, it is about 4
times the experimentally observed value. "
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The vanishing of the quasiaverages usually associated with superfluidity and supercon-
ductivity is shown for arbitrarily interacting Bose and Fermi systems which are con-
fined to a geometry with one or more dimensions finite while one or more dimensions
extend to infinity. However, it is suggested that these partially finite geometries are
anomalous and are not good approximations to thin film and pore geometries found in
the laboratory. The conditions on the box size which are necessary and sufficient for
condensation to occur in an ideal Bose gas are also given.

Wagner' and Hohenberg' have used a gener-
al inequality obtained by Bogoliubov' to derive
inequalities for quasiaverages in arbitrarily
interacting Bose and Fermi systems. They
have been applied to one- and two-dimension-
al systems by Hohenberg who showed that at
finite temperatures the quasiaverages usual-
ly associated with the existence of superfluid-
ity and superconductivity are zero. The pur-
pose of this note is twofold: (a) to point out
that the absence of these quasiaverages is char-
aeteristie of all Bose and Fermi systems con-
fined to a geometry with one or more dimen-
sions finite while one or more dimensions ex-
tend to infinity (partially finite geometries),
and (b) to point out that strictly finite thin films
and tubes behave more like the bulk system
than like the partially finite systems.

We first consider the Bose system. Wagner's
form of the Bogoliubov inequality (6.25) states

N'na KT l-) --, '' „,---, ka,k kv nk+vm 0" 2'

where the quasiaverage for superfluids, (ao) &,
equals n, ' ", n, is the density of particles in
the zero-momentum state, which is of the or-

der of the total density n if condensation occurs,
and zero otherwise; T is the temperature;
v is Boltzmann's constant, " m is the Boson mass;
and v is the coefficient of the symmetry-break-
ing term in the Hamiltonian (-', vQ~" (ao +ao~)).
Wagner has discussed at length the motivation
for and justification of the symmetry-break-
ing technique, and we will not discuss it fur-
ther but will only point out one of its implica-
tions.

The density of particles is given by

n = = lim lim —Q-(a a-)(x)

v~0 Q~ao

where 0 is the volume of the system. Since
(ay+ay) ~ is positive, we have

n & lim lim —Q (a- a-)
Q k kvv-0 0-~

where the prime indicates a summation over
(k), where (kj is a subset of the allowed k val-
ues. Since periodic boundary conditions have
been used in the proof of Wagner's inequality,
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