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LOW-ENERGY THEOREMS FOR SPIN S=17
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Two new results for Compton scattering are noted: (a) a relation for S= 1 which tests
whether the total cross sections for unpolarized photons on a polarized stable target
are asymptotically independent of the target polarization, (b) the existence of low-ener-
gy theorems for all intrinsic multipole moments. The electric-quadrupole theorem is

given explicitly.

It is the purpose of this Letter to state two
theorems concerning the Compton scattering
on targets with spin S=1. Each of these the-
orems comprises a group of low-energy the-
orems. The assumptions made are the same
as for the known theorems'™® for spin 0 and
3. Inparticular: (1) P- and/or T-noninvari-
ant effects are neglected, (2) the target is as-
sumed to be nondegenerate with any other par-
ticle with the same mass and other quantum
numbers. The results, then, are exact in the
strong interactions. They will also be electro-
magnetically exact if the infrared limit spelled
out by Low! exists.* In any event, the present
arguments for S=1 are on the same footing
as for S= 0,% as long as a consistent treatment
of electromagnetic interactions exists at all.*

We define a(S,, w) as the elastic forward am-
plitude for the scattering of a photon with fre-
quency w and some fixed helicity on a target®
with polarization S,.

Theorem I.—For any S>1, there exists one
and only one nontrivial relation between the
2S+1 threshold amplitudes a(S,;,0). If this re-
lation may be converted to a sum rule, there
follows a nontrivial homogeneous relation be-
tween integrals over total cross sections of
unpolarized photons on polarized targets. By
“nontrivial” is meant that the relation is not
a consequence of rotational and crossing sym-
metry alone.

Theorem II. —There exist low-energy theo-
rems for all 2S+1 intrinsic multipole moments
of a particle with spin S.

The detailed proofs of the theorems® are some-
what lengthy, but quite straightforward. The
only complexity of some substance is that one
has to answer the following question: Consid-
er the scattering amplitude in the nonforward
direction without implementation of the trans-
versality condition for the external photons.

The number” of independent amplitudes is then
equal to N, (S)= (4S-[S]+2)(2S+[S]+2). What
is an explicit basis for these Np (S) functions
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which is free of kinematical singularities?
Having found this basis, one also has the right
basis for the number Ny(S)=2(S+ 1)(2S+1) of
amplitudes which survive after transversality
is imposed. A method of explicit construction
for arbitrary S will be given in a paper now

in course of preparation, along with other tech-
nical details. Here we shall only indicate what
are the main steps in the argument.

Details of Theorem I.—~The general forward
amplitude is written as A(w), where 4 is a
matrix function of S. A contains [3S+1] inde-
pendent amplitudes and can be written as®

Aw) =4, ()" € +iA, ()5 + (€' X €)

-

+A3(w)[§~g',s-.€]+0(w2). (1)

For example, for S=1, the term O(w?) is A,(w)
xét+ €@ +k)?. Further analysis shows that A4,(0)
exists; and similarly for O(w?) for higher S.
Thus A(0) has at most three independent am-
plitudes, as is obvious from angular-momen-
tum conservation alone.® Furthermore, A,(w)
~w, as follows essentially from crossing, hence
at w=0 only A4, and A, survive. But now, in
addition, it can be shown by the standard meth-
od* that for any'® S,

A4(0)=0. @)

It is only because of the additional Eq. (2)
that the Thomson limit follows (to no one’s sur-
prise) for S=1. What is more remarkable is
that Eq. (2) has still further consequences (apart
from the vanishing: of double spin flip at w=0),
Namely, as 4,(0)=-e*/M (M =target mass),

a(S;,0)=-€?/M, for any S. (3)

Thus if and only if all terms in a(Ss, w) which

do not vanish as w — = (and there are such terms!)
are independent of S;, then it follows from Eq.

(3) that we have an unsubtracted dispersion
relation for a(S;, w)-a(Sy’,w). Summation over
photon polarizations then yields

[0S, w)-0(Sy’, w)ldw =0, all S;,S".  (4)
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0(S;, w) is the total cross section for the scat-
tering of an unpolarized photon on a target with
polarization S;. Because of

0(S;, w) =0(=S;, w), (5)

there are only [S] nontrivial relations of the
type of Eq. (4). Thus for S=1 we only have
one new relation:

f[o(l,w)—o(o,w)]dw=0, S=1, (6)

Equations (4) and (6) may be of interest for
experimental study. Indications of failure of
these relations would contribute evidence against
“asymptotic polarization independence.”

Remark. —It is curious that, for S=1, we now
meet a homogeneous “consistency condition”

(a superconvergence relation) which is not im-
plied by rotational invariance, while recently
it was found! that, for isospin =1, one also
meets homogeneous consistency conditions not
implied by isospin invariance, and likewise
dictated by low-energy theorems combined with
asymptotic behavior. It may be of interest to
combine these two phenomena!

Details of Theorem II. -For a ZL—pole mo-
ment one will need a low-energy theorem ac-
curate to O(wL). However, this does not mean
that we need the full amplitude to this order.
[In fact, it is well known's? that to O(w?) a ful-
ly structure-independent description is impos-
sible.] Indeed, more specifically, for an elec-
tric 2L pole it suffices?? to have a theorem for
the terms ~wL¥;(6,®) (L even), while for
oL magnetic we need ~wLYL_1,M(9,<p) (L odd).
Hence for L>2 no multipole theorems can be
found from the forward direction only.

Thus we expand the full amplitude A(w, 6, @)
as follows:

A=€¢ A €
m mn n

N
1 Z < w) (NLM)
=— —] € 'A €Y (8,9). (7)
MNLM M m  mn n LM
The 4,,,(NIM) still are matrices in S. In this
language,

(000) _. __ 26 172 (¢ ”
Amn e mn(41r) (“Thomson”), 8)

A (100)=_:11_iez(g_2)2€m

1/2
mn nlsl(‘m) : ®)

g is the gyromagnetic ratio. Thus low-ener-
gy Compton scattering includes a “g—2 exper-

iment” for any S, independently of the high-
energy behavior of amplitudes.!®

For the electric quadrupole moment eQ (in
units of 1/M?) one can show that'?

(A +A,5) @) = _E(47/5)H2 2Q(§2-S2).  (10)

The proofs of this result as well as the ones
for higher moments makes use of the follow-
ing basic ingredients.

@) Put A=€,'A) ye,and A, =Up  +E ),
where U and E refer to the “unexcited” (or s,
u-channel target pole) and excited contributions,
respectively. We have!

"y - '
km ( mn+Emn)kn ww (U44+E44). (11)
(b) Crucial to the present argument is Singh’s
lemma which states that**

E44 =km’kn[Amn(w,’ ko, k,)

A (-, -k -0, -R)], (12)

where A, is a three-tensor of second rank,
free of kinematical singularities. Expand A,
just like A,;, in Eq. (7) and insert in Eq. (11).
We exemplify what happens for the @ calcula-
tion where we need Eq. (11) to the accuracy
O(w*). Here we need Ay, to O(w°), hence the
most general form of E,, to our order is ak-k’
+b {§ E,§- 1?}, with @ and b unknown numer-
ical constants. On the other hand, ¢®@ appears
in Eq. (11) through a term ~k-k’[(§- k)2 + §-&’)?].
Hence to the order considered, E,, contains
“the wrong tensor” and cannot affect the deter-
mination of €?Q. As is well known,! one does
have a low-energy theorem as soon as one has
proved that E,, cannot affect the answer.

The procedure for a general ZL-pole moment
follows similar lines. Expand A, in the base
of N_(S) functions mentioned earlier, and like-
wise for E,, . By considering simultaneous-
ly (a) the power dependence in w, (b) the LM
dependence, and (c) the dependence on irreduc-
ible tensors in spin space,’® one consistently
finds that, for multipole moment terms, E,,
drops behind in a power counting in both « and
cosf, as compared to the unexcited terms in
Eq. (11).

In conclusion, while Compton scattering is
hardly the best way to measure multipole mo-
ments, it is nevertheless of some interest that
as a matter of principle such a measurement
is contained in the Compton effect.
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iSee Ref. 1, Sec. I. The limit in question is A—0,
where A is an infinitesimal photon mass. A is intro-
duced to make the target rigorously nondegenerate
with target plus soft photons. It should be noted that
A —0 certainly causes no problems for all graphs de-
noted by class A in Ref. 2, as long as the electromag-
netic vertex exists. The insistence on existence is no
mere luxury. For S =1, not only are there well-known
ambiguities in the Lagrangian formulation of electro-
magnetic interactions. But, furthermore, the power-
series expansion in ¢2 is most likely not valid [T. D.
Lee and C. N. Yang, Phys. Rev. 128, 885 (1962)]. It
should be stressed that we are only concerned about
the existence of the theory, not about the e? expansion.
In particular we can use exact electromagnetic-vertex
functions in class A graphs. We also bypass the am-
biguities noted especially by T. D. Lee, Phys. Rev.
140, B967 (1965), concerning minimality for S =1. In
any event, it is hard to imagine complications for a
target particle like the deuteron; while even in the non-
perturbation approach, anomalous multipole moments
may be expected to have an electromagnetic contribu-
tion small compared with the strong interaction con-
tribution—cf. T. D. Lee, Phys. Rev. 128, 899 (1962).

SThroughout this Letter, we consider the spin to be

quantized in the direction of the incoming beam. Where-
ever specification is necessary, all amplitudes shall
refer to the laboratory system. We work in the trans-
verse radiation gauge. ‘

6'Upon communication of Theorem II to Dr. V. Singh,
he informed me that he had conjectured that this theo-
rem might be ture.

"Effectively, N, is the number of independent ampli-
tudes for the scattering of a massive neutral vector
meson on a target with spin S. [S] denotes the integer
part of S.

8(¢’,%’) and (¢, k) are (polarization, momentum) of
the final and initial photon, respectively. {a,b}=ab +ba.

SFrom here on, we always understand that S =1.

Wpor S=1, Eq. (2) is equivalent to the relation ¢ =0
in L. I. Lapidus and Chou Kuang-Chao, Zh. Eksperim.
i Teor. Fiz. 39, 1286 (1960) [translation: Soviet Phys.
~JETP 12, 898 (1961)].

UA. Pais, Phys. Rev. Letters 18, 17 (1967).

29, ¢ are the polar angles of i’ relative to k. k is
taken in the 3 direction.

BStarting from the algebra of electric dipole moments,
sum rules for g-2 have been derived by M. Hosoda and
K. Yamamoto, Progr. Theoret. Phys. (Kyoto) 36, 425,
426 (1966), and G. Konisi and K. Yamamoto, Progr.
Theoret. Phys. (Kyoto) 37, 538 (1967). Note that such
sum rules, especially for S =1, are on a less firm
footing than the low-energy theorem (9). See the dis-
cussion by H. Pagels, Phys. Rev. 158, 1566 (1967),
Appendix, where the theorem (9) is stated for S =1.

45¢e Ref. 3, Eq. (13).

150f course these dependences are correlated by the
conservation of angular momentum. The identification
of the ZL—pole terms is facilitated by noting that we
need a totally symmetric tensor in Sy, of rank L. To
be quite precise, the 3x 3 spin-matrix relation, Eq.
(10), is fully determined by the low-energy theorem
apart from the transitions S3=1—+1 and -1—-1. Of
course these two diagonal elements are equal. The
matrices Amn(z ) for M=1 and 2 are fully deter-
mined.

NONRESONANT PRODUCTION AMPLITUDES OR THE DECK EFFECT*

Marc Ross and Y. Y. Yam
Department of Physics, University of Michigan, Ann Arbor, Michigan
(Received 5 July 1967)

We wish to generalize the class of produc-
tion processes which can be handled by “sin-
gle-scattering”® methods to cases where more
than two particles or resonances are produced.
The object exchanged may be a particle or its
trajectory but we are especially interested in
vacuon, or Pomeranchukon exchange process-
es, also called diffraction dissociation,? because
this leads to the largest cross sections. In
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the present Letter, we give a prescription only
for the background amplitude: the amplitude
which would be present in a certain channel

if there were no resonances decaying into that
channel. If there is a decaying resonance, where
the same partial wave occurs in the background,
there will be a reaction on the background®

which can be significant in addition to the in-
terference of resonance and modified background




