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the radiation is produced by the induced image
charges of the electrons oscillating normal
to the surface as the electron beam passes
by the rulings. In our experiment, the bom-
barding electrons are directed normally to the
grating surfaces exciting SPO which then ra-
diate. The dispersion relations of these SPO
can be obtained in this fashion as illustrated
in Fig. 2.
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The dispersion of plasma-wave propagation in the alkali metals sodium and potassium
has been observed to deviate significantly from that expected for a noninteracting elec-
tron gas. Modifications of the dispersion have been calculated using the I.andau Fermi-
liquid theory and a quantitative evaluation of the first two moments of the interaction func-
tion has been made for the case of potassium.

Recently we reported the observation of a
new class of wavelike excitations in potassium
which propagate perpendicular to a magnetic
field near the Azbel'-Kaner cyclotron resonanc-
es nxz =v. ' The clearest data were obtained
with microwave surface currents J flowing
parallel to H (J ll H, "ordinary mode" ) at field
values above the fundamental resonance. The
measured dispersion relation (wavelength ver-
sus H) for these waves proved to be in quite
good agreement with that calculated for a de-
generate free-electron gas having an effective
mass appropriate to potassium. Later exper-
iments have revealed similar propagation "win-
dows" at each of the first few subharmonics
in both the J'

1~ H and the J&H ("extraordinary
mode" ) polarizations. ' While the free-electron
model is generally successful in accounting
for the qualitative existence of all the waves

near resonances, ' it has become apparent that
it fails to account quantitatively for the exper-
imental data. The discrepancy is particular-
ly severe for J&B near ~=~~. In this Letter
we show that the discrepancy is removed if
electron correlations are included in the model.

Using the Landau Fermi-liquid theory, we
account for the experimental dispersion rela-
tion and directly evaluate the first two moments
of the Landau interaction function. In princi-
ple, precise measurements of the dispersion
relation of all the modes would provide a com-
plete quantitative evaluation of all moments
of the spin-independent interaction function.
The latter is independent of and complemen-
tary to the spin-dependent interaction which
gives rise to the spin waves recently observed
in sodium and potassium. '&'

The experimental details remain essential-
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ly unchanged': %e measure the derivative with

respect to magnetic field (dA/dH) of the micro-
wave power absorbed by a plane-parallel slab
of highly purified alkali metal at 1.3'K. The
linearly polarized surface currents flow on
both sample faces in order to enhance sensi-
tivity to any transmission effects. Since the
basic unit of length in this experiment is the
cyclotron orbit at the fundamental resonance
field, R ~ ~ ', the experiments are now per-
formed at two experimental frequencies, w

-7.7 x10" rad/sec and -11&&10" rad/sec, to
check that the structure in the dA/dH curves
due to the finite sample thickness, L-0.10-
0.15 mm, does indeed scale properly with fre-
quency. The sample thickness is directly re-
lated to R by separately observing the Gant-
makher radio-frequency size effect.

Since these waves penetrate into the bulk
of the metallic specimen, it is possible to de-
scribe quantitatively their propagation char-
acteristics by neglecting boundary effects and

examining their infinite-medium dispersion
relation. The dispersion relation for a wave

e . .(k, (u) = 5 . . +4m(x. .(k, w)/i~V'228
For the parameters involved in these experi-
ments it is sufficient to approximate the dis-
persion relation Eq. (1) by'

o + (o )'/o = 0.
xY xx (3)

The physics of the problem lies in the conduc-
tivity tensor vt&(k, e). For a noninteracting
gas of quasiparticles with mass m*, crt&(k, cu)

may be evaluated from the linearized, Fouri-
er-transformed, Boltzmann equation. A typ-
ical element' (neglecting dissipative effects)
1s

of the form E = eel(~f-k 'r) propagating per-
pendicular to the static magnetic field point-
ing in the z direction with k along the x axis
and e the polarization vector in the x-y plane
is given by

k'/k '=e +e '/e
0 yy xy xx'

where k,'=v'/c'. The dielectric tensor et&(k, cv)

is simply related to the conductivity tensor,

Sue' ~ ~ a' J bsin8 J ' bsin8 d8
sin'8 g

yyg+~ ~
0 g2 —g2 b 1+ Qca=0 n0

(4)

with b =k VF/e, a = +/w, and roc =eH/m *c.
Similar formulas apply to axx and 0&y.

A plot of the dispersion relation Eq. (3) uti-
lizing the free-electron conductivity tensor
is shown in Fig. 1 along with data for potassi-
um. ' The agreement is seen to be poor. The
reason for this is that in the long wavelength
limit (b -0), and for magnetic fields near the
resonance &u/~ =1, Eq. (3) reduces to

1+b4/700(u)/w -1)=0. (5)

kR
L

L ~

To order k' the free-electron theory predicts
no propagation near the first harmonic. To
order k~ there is a weak singular term. In a
plot of kR vs &uc/v obtained from Eq. (5) the
curve stays extremely close to the &uc/~ =1
line, except for very large kR (solid curve
in Fig. 1). We can say that a noninteracting
electron gas does not "want" to have a prop-
agating mode in the neighborhood of the first
cyclotron resonance. '

%e now show that correlations significant-
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FIG. 1. Comparison of the theoretical noninteract-
ing dispersion curve with the observed extrema of
dA/dH taken at two frequencies.
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ly modify the dispersion relation in that in the
presence of correlations, the dominant term
is of order k' and not of order O'." To calcu-
late the conductivity of an interacting electron
gas we use the Landau theory of Fermi liquids. "
The response of the system to slowly varying
external disturbances (h&u/&F «1,k/kF «1)
is completely described by a quasiparticle en-

ergy-momentum relationship E(p, r, t, o) and
a quasiparticle density matrix p(p, r, t, o) or
distribution function. In equilibrium, the qua-
siparticle distribution function n, (p) is a Fer-
mi distribution and the quasiparti. cle energy
E'(p) =p'/2m*. " In nonequilibrium, the ener-

gy of the quasiparticles is a functional of the
distribution function:

E(p, r, t, o) =E'(p) + [1/(2w)'] Tr, fd'p'f(p, o, p', o')5p(p', r, t, o'),

where 6p =- p-n, . The function f is the basic
phenomenological quantity characterizing the
Fermi-liquid theory. For an isotropic system,
f takes the form

f(P, o, p', o') =f(P,P')+C(p, p')o. &'

Since p and p' are fixed on the Fermi surface,
f and P may be expanded in Legendre polyno-
mials:

f(p, p') =Q f I' (cos6)

k(P, P ) =Q g a (cose).

The set of dimensionless quantities

A =m*p f /w2(2n+1),
n F n

a =m*p g /~'(2n+I)
n F n

are the parameters which specify the trans-
port properties of the Fermi liquid. Here we
are concerned with electrical properties, i.e.,
the conductivity, and only the A~ enter. For
spin waves only the B„are relevant. '~'

The density matrix 6p satisfies a transport
equation similar in form to the usual Boltzmann
equation. We are interested in the solution
of the transport equation in the linear approx-
imation. Defining the quantity g as

Tr [5p] -=[an /sE'(p)]g,

the transport equation for g becomes"

Qg—+ V ~ V+-(V&&H) = [g+5e, ]=eE ~ V, (7)
C ep

where IV [ =pF/m* and

«, = „.fd'P'f(p, p')g(p') ~(EF-~'(p )'j.

The current j and hence the conductivity ten-
sor are proportional to an integral over g, i.e.,
j ~ fPgd Qp

As k —0, Eq. (7) may be solved analytical-
ly. In the neighborhood of the first cyclotron
resonance the solution, when inserted into Eq.
(3), leads to

b2 1

2(&-ri) (ri-2r2)

„7ra'i+ 5rori 2r' io-ror, -0 (8)15

where

=1+A
tl n

Equation (8) yields a real solution to order k'.
When y„=—1, the coefficient of the k' term van-
ishes and we revert to the uncorrelated case,
Eq. (5). As we conjectured, the correlations,
even for small A„, drastically change the char-
acter of the resonance near the first harmon-
ic. There now exists a propagating mode to
order k' whose k -0 limit is shifted away from
uo/~ =1. The wave first appears at ~/&uo =1
+A, ." The shift of k -0 intercept is a gener-
al conclusion of the theory. The intercepts
of the various dispersion curves associated
with the nth subharmonics are shifted by the
corresponding A„.- That is, the intercepts oc-
cur at ~/~o =n(1.+An). In principle, we can
therefore determine A for n ~ 1 by finding
the intercepts of the dispersion curves at suc-
cessive subhar monies.

Since data exist for 0&kB &4, it is desirable
to have a solution of Eq. (7) valid for all val-
ues of kR. This may be obtained by assuming
(for the moment without justification) that Ao
is finite and that Az =0 for n ~ 1. In this case
the dispersion relation Eq. (3) is easily com-
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puted. We find that

(r '+(v ')'/o '+[S (k, &u)i(r '+A 0 ']=0, (9)
yy xy xx 1 ' xy 1 yy

where o '' is the conductivity tensor in the
22

absence of correlation effects and the functions
8, and S, are given by

ng2
A =A, , J 'd cos8,

'm =0'

S1=A 2 2 -IJ J 'sined cose
m=0

The fitting procedure we will adopt for the ex-
perimental data near the first harmonic with
J&H is to neglect all A„, n - 1, except for the
fact that the finite A, shUts the position of the
fundamental intercept. This procedure is con-
sistent with all of the available data in both
polarizations and is the justification for just
including Ao in an arbitrary kR solution of Eq. (7).

In Fig. 2 we have plotted Eq. (9) with an A,
of -0.7 and with an intercept which has been
shifted to &uc/e = 1.08, i.e., A, = -0.08. Typ-
ical curves for Ao = -0.53 and -0.89 are shown
to indicate the sensitivity of the fit to a vari-

ation in A, . In K this fixes A, at -0.7+ 0.1 and

A, at -0.08+ 0.02.
Equation (9) exhibits two branches. The up-

per branch is close to the correlationless dis-
persion curve shown dashed in Fig. 2. The
lower, longer wavelength branch which we
might expect to observe in these experiments
fits the data reasonably well (certainly with-
in 10%). There seems to be some peculiar
behavior in the region 1.00 & cue/~ & 1.1. This
is probably due to interference with oscillations
in dA/dB because of the upper branch which
still exists in this region. To unravel the de-
tails very near the cyclotron resonance, we
will ultimately require at least a partial anal-
ysis of the actual boundary-value problem.
The important point to make here is not that
we measure a specific value of A, or A, (the
fitting procedure is certainly open to question),
but that correlations qualitatively change the
propagation characteristics of these waves.
Utilizing these experiments along with the spin-
wave experiments, ' it is now possible, at least
in principle, to determine the complete Lan-
dau f function for a series of alkali metals.

Similar results have been obtained for Na
although they are not as extensive as are the
potassium results. We defer discussion of
all the available data to a later publication.

We would like to thank T. M. Rice, E-Ni Foo,
P. S. Peercy, and S. J. Buchsbaum for sever-
al stimulating discussions, and P. A. Wolff
and S. J. Buchsbaum for a critical reading of
the manuscript. The pure alkali metals were
prepared by P. H. Schmidt and technical assis-
tance was provided by L. W. Rupp, Jr.
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FIG. 2. Comparison of the theoretical dispersion
curve, including correlation effects, with the experi-
mental data. The upper branch lying near the nonin-
teracting dispersion curve (dashed) is plotted for a
single value of Ao since it is quite insensitive to that
value.
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DISLOCATION DRAG IN METALS

G. P. Huffman and N. P. Louat
Edgar C. Bain Laboratory For Fundamental Research, United States Steel Corporation Research Center,

Monroeville, Pennsylvania
(Received 22 June 1967)

%I|en a dislocation moves through a metal, it generates electric fields which produce currents
in the conduction-electron gas. We wish to suggest that the energy dissipated by such currents may
be the origin of the large, strongly temperature-dependent component of the yield and flow stress-
es observed in bcc metals. ' The calculation is closely analogous to acoustic attenuation theories' '
except that instead of dealing with a single phonon, one must deal with what is essentially a wave
packet of phonons, i.e. , a moving dislocation. One begins with the Boltzmann equation,

Bf (r, t) Bf-(r, t) eE(r, t) Bf-(r, t) [f-(r, t)-f +'(r, t)]
+V~' +

k Br m vk T

where fk(r, t) is the electron distribution function, giving the probability of finding an electron with
momentum k at position r and time t, E(r, t) is the electric field generated by the moving dislocation,
vk is the electron velocity, and 7 is the electron relaxation time. fk"'(r, t) is taken to be the equi-
librium electron distribution function in the rest frame of the moving lattice and is expanded in the
usual fashion.

Putting fk(r, t) =fk"'+fku'(r, t), one finds

(l)- k k q q F q
Bf-+' (i- ~ [eE-(w) +mu (&u)/&]-2& &-(~)/3&} i q r-(dt

r, t =-T e
k ' Be (I ixiT+iq ~ v—-&)

k @~R k

where fk"' is the ordinary Fermi distribution function, ek and EF are the unperturbed one-electron
and Fermi energies, respectively, and E-(o;), u-(v), and &-(u&) are the Fourier transforms of the
electric field, lattice velocity, and dilatatton, respectively, produced by the moving dislocation.
The boundary condition that the dilation, electric field, etc. , must have the same values at the space-
time point (r+mb, t+mTD) as they have at (r, t) restricts o,' to the values

(u=q b/T -2nn/T
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