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The Kohn variational principle is extended to apply to scattering processes where a two-
particle bound state is broken up by a third particle.

In the past it has often proved that use of a variational principle' has been the most efficient meth-
od of making quantitative calculations of the properties of systems of several particles (more than
two). In particular, the Kohn-Hulthdn principle has been applied successfully to problems where
the open channels contain only two bound parts, as for example, electron-hydrogen atom scattering. '
In this Letter, we discuss how the principle may be extended to include open channels containing
three separated particles.

As an example, we take the case of three different particles of equal mass (m = —,') interacting through
two-body potentials that are superpositions of Yukawa potentials. We assume that each pair may
form a number of bound states labeled by a& with binding energies Ez (i =1, 2, 8 denotes the parti-
cle that is not bound). In practice the initial state of the system will contain one of these bound pairs,
say 2 and 3, and will be described by the state ( y) =

~ X,', p'), an eigenstate of H, =H, + V„energy
E, where B, is the kinetic energy of all three particles and V, the interaction between 2 and 3. We
work in the frame with total momentum zero, and p is the initial momentum of particle 1.

Using Eq. (184), p. 102, of Goldberger and Watson' we may write the scattering wave function cor-
responding to initial state I g) as

y+(p.) = g(p. ) + (2w)-'"8-'"JdZ. exp(ip . .Ii .)(E-Z'+is) '(If.
~
T+(E) I y),

where we have used a notation similar to Lovelace such that pi is a six-dimensional vector

p, =(X„Y,) =((3)' [r,-~(r2+r~)], (2) " [r,-r3]j
and

&, =(P„Q,) =((-)"'p, (2) "'[p -p ])

(2)

and similarly for i = 2, 3.
Alternatively, proceeding from Eq. (81), p. 79 of Ref. 3, taking the yf,

~ as eigenstates of Hz =H0+ V;,
we find

3

y (p.) =y(p. )+(2m) 8 'fdic. q- (Y'.) exp(iX. ~ P.)(E—Z +ie) (Z. Ir. ly)
2 iQ~ i Z g

3

+(2w) (-,') Q fdP y(Y.) exp. (iX. ~ P.)(E+E -p. +is) (X,P. [T(E) (y).
i Z 2 G Z

(4)
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The matrix elements (Zi I T+(E) (X} and (X~~, Pi I T (E) I X) are the usual reduced T'-matrix elements
for scattering from the initial state to a three-particle state and a bound pair, respectively, with
the final states off the energy shell. Howeve~, (R, I T IX) is given by

g. IT (X) =(g, P. ([1+V (E-6+i@) ]V IX)i i Qi

=(g. ([1+V.g -B.+is} ][1+V (E-8+i@) )V IX)
2 . -1 '

. -1 1
Z

which is equal to (A' I T+(E) (X) on the energy
shell Z.'=E. We have used V = V-Vi.

In Eq (4.), iIQ. (Y) and X '(Y,) are scatter-
ing and bound-state wave functions of the rel-
ative coordinate Yz, and

iX P'
x(pi) =(2~) x, (Y,)e

We stress that Eqs. (1) and (4) hold whichev-
er index i is placed on p, R, etc.

For the variatio~. al principle, we need to
know the asymptotic form of g+(p) for large
p. Equations (1) and (4) provide this informa-
tion if we make use of the analytic properties
of the T-matrix elements appearing there.
Using the methods of Rubin, Sugar, and Tik-
topoulos, s we may deduce that, near real R,
the only singularities of (R ( T+(E) (X}are sub-
energy bound-state poles and normal thresh-
olds occurring at

"2=P. =(E+E +is) @=1 2 ~ ~ ~
t

and
P.' = (E+ie)

for all j. The singularities of (Ei I Ti (X) are
the same except that for j=i, (7) is replaced
by Q~'=0. At the singularity Q'=0, the on-
shell matrix element g (T (E) (X} is actually
an analytic function of Qi

=(Qi')'~' (see Eden
et al. ,' p. 230).

I et us suppose that p = pp» with p„a unit
six-vector and p large, and slightly distort the
integration contour in (1), to R -/+ibad We
would like to choose the distortion so that Re(ip
~ R) & 0 and also so that the singularities of
(E-E'+is) ' and (A'(T+(E) I X) are not crossed
Providing p„ is chosen so that Yi u0 (all i),
we may show that this is possible except near
Ã =E"'p„. Near here (K I T+(E) I X) is analytic,
and we may replace it by (E'"p„(T (E) (x}ac-
cording to the usual method of stationary phase.
Consequently, using the Appendix of Schwartz
and Zemach, ' we find that

P (p) - x(p)+e "E'3 '(4v) p

~l/2
&&(+E'p (T (E) (X&e (8)

where we emphasize that all pairs are well
separated in the limit. This result is complete-
ly analogous to the usual result for two-par-
ticle scattering. In (8) we have also given the
corresponding asymptotic form of I g ).

If, however, p is large but one pair is still
close together, we cannot expect that (8) will
be correct. This case may be studied by keep-
ing Yi fixed (for some i) and letting (Xi( -~.
Equation (4) is suitable for investigating this
limit. We write X~ =XiXi„and let Xi —,and,
using the same method, find that

3

0 (P) — X(P)-3 '(4~) (X'.) ffdQ 0- (Y.) exp[+i& P(Q. )]i i Qi i Z 2

3

x(+P(Q. )X. , Q. IT (E) I X)+2 gX (Y.) exp[*iXP(-E )](X,+P(-E )X. IT (E)X')j, (9)

where P(z) = (E-z)'~', and we have used the equality of (E I T (E) (X) and (Ri(Ti I X) on the energy
shell. The integral over Qi is restricted to those Q; satisfying Jim «E.

The form given in (9) may be further simplified by noting that the phase of exp[iXiP(Qi )] is station-
ary at Qi = 0. Near Qi =0, gQ. (Yi) and the on-shell T-matrix element are analytic, so that the pre-
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vious techniques give

1

p (p) - y(p)-(~)'(4w) (X.) (-e ' E'w'X. 'g (Y.)(~E'X. , OI T (E) I g) exp(+iX.E')
i 0 i iu' zQ.~ oo

l

+ Q y (Y ) exp[+iX.P(-E )](y,+P( E-)X. I & (E) I X) ),
Q.

(10)

where Yi is fixed as Xi-
Thus we have seen that the asymptotic form of g+(p) for any p with p large is determined by the

on-shell scattering matrix from the initial state to all possible final states, assuming we regard
the two-body wave functions gq and y~' as known.

We may now follow the standard technique, described for instance in Ref. 1, to obtain a variation-
al principle of the Kohn' type. We study the variation of the integral I defined by

I= fdp y *(p-)(E II)-g'(p),

and g, g are varied about their correct values, but maintaining the asymptotic forms (8) and (10)
with some unknown on-shell T-matrix elements. We find that

BI= fdp(g ~V 25/+ Bg+V-g *)
p p

= f dS ~ (II-+Very+-BII+Vy-+),

where Z is the boundary of the six-dimensional volume of integration, and must be taken to ~. %or
Z, we shall take the "sphere" p' =R' except near Yi = 0, where we shall use spherical cylinders X
=R" which intersect the sphere at Y' =R'-R". We assume that (8'-R") approaches infinity as A- ~
in such a way that the solid angle subtended by the nonspherical parts Zi of Z tends to 0.

The only nonzero contribution to 5I (in the limit) comes from taking g of g with the g, part of
(10). This leads, using dR ~ V =X,'dY, dX, B/BX„ to

3

3

&«&X, , P'X. )I~ (E)IX&=-8 '(2 ) «Xl, p'IT (E)IX&

This may be seen by making a partial wave expansion in X,. We have used the fact that the volume

of integration for Y, approaches infinity, so that we obtain the normalization integral

fdY, I& '(Y) I2=2-»2 (14)

The other contributions to 6I from Zi may be shown to be 0 in a similar manner.
From the spherical part of Z, leaving aside the contributions of y to g (which obviously gives

0), we may use the asymptotic form (8) and dS ~ V = p'dp~B/Bp to find

3 2 1 1

Zsph u

(15)

disregarding terms which vanish in the limit 8 —~.
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If ) g+) and Ig ) referred to different initial
two-body bound states, say ly ) and ~)|&), thena
(13) would read

~{fdic g~ *(-p)(F- &-)g '(p)

+3 "'(2m) 3(y~)T+I y ))=0, (16)

which has the form of the Kohn' variational
principle.

Our analysis of the asymptotic form of the
wave function was based on the analytic prop-
erties of the T matrix near real momenta.
The properties would hold for any potential
whose matrix elements are analytic near real
momenta which behaved suitably for large mo-
menta. It is not necessary to insist on a su-
perposition of Yukawa potentials.

We believe that this variational principle
may provide a practical, efficient method of
calculating scattering amplitudes for (2 - 3)
processes. It is superior to techniques involv-
ing integral equations in that (3 -3) process-

es along with their awkward singularities are
not explicitly involved. It remains to apply
the method to an actual problem.
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The preliminary results of an elastic-scat-
tering experiment of positive m mesons on pro-
tons have recently been obtained. The work
was performed at the Rutherford High Energy
Laboratory. The differential cross sections
have been measured at ten incident pion mo-
menta between 1.72 and 2.8 GeV/c and a qual-
itative analysis is presented which suggests
that the enhancement seen in the w+P total cross
section at a center-of-mass energy of 2420
MeV' may be explained by an ll/2+ resonance.

The experimental details are similar to those
of earlier work using negative m mesons' and

will be published with the final differential cross
sections in the near future.

For the present analysis the differential cross
sections were normalized in the following way.
An exponential function y =aoe ~ was fitted

over the region of the square of the momentum
transfer -t (0.4 (GeV/c) . This was extrapo-
lated to t=0 and matched to the forward cross
section calculated from the optical theorem
and dispersion relations. ~ This procedure gives
a relative normalization error of about 1 mb
in the total elastic cross section. Absolute
normalization of the results is being undertak-
en at present.

The differential cross sections have been
fitted by a series of Legendre polynomials

+max
do/dQ=X' g C P (cos8)

0 Pl g

by the method of least squares. The coefficients
C~ which were obtained are shown as functions
of incident pion momentum in Fig. 1. The high-
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