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We have derived several sum rules based upon the assumption that the SU(3) group
will be exact at infinite energy. In this way, decays of vector mesons into lepton pairs
have been computed together with the decay rate for y KK.

Recently, it has been shown'~' that the study
of the asymptotic behavior of suitable linear
combinations of matrix elements constructed-
on the basis of some symmetry can lead to use-
ful results regarding broken symmetry. In
the present note, we show how the same idea
can be applied to obtain some interesting re-
sults for vector meson decays.

We define the following propagator functions:

p, v

where

V (x) =-, iq(x)y A q(x) (o =0, 1, ~ . , 8) (2)
(o')

P CV

in terms of the quark field q(x). Assuming that
the SU(3) symmetry becomes exact at k -~,
i.e.,

lim [L "'(k) -L "'(k)]= 0,
p, & p, v

and following the same procedure as in Ref.
2, we immediately obtain the sum rule

=ifd xe (OIT(V (x)V (0)j[0), (1)

where

(n) 2 p, v 2
1

(k) = dm 5 p (m )+, p (m )»+Schwinger terms.
LLtV PV D m2 e k2+ m2 (5)

If we now assume that the spectral functions
are dominated by p', e, and q mesons, we

get

G '/m '=G '/m '+G '/m
p p co c0

where 6 is defined by

(0~V "'(0) ~p'(V))=e (e)G /(2e V)"'
p, p 0

and G~ (G@) is defined similarly, replacing
V&"' and p by V&'" and ~ (y), respectively.
Equation (6) gives a sum rule among the par-
tial rates' of the vector mesons decaying into
lepton pairs, namely

(6)

—,'m I'(p'-ll ) =m I'(&u-il )+ m I'(y - ll ), (8)
p (d

where l corresponds to p. or e and we have
assumed as usual that the electromagnetic cur-
rent j is given by j &

= V&" '+ V "'/W3.

Using the experimental branching ratios of
po- p, +p. ' and &u-e+e 'which are (5.1+1.2)
X 10 ' and (12+3)&&10 ~, respectively, we find'
I'(p —p+p. )/I'(p —all) = 1.6&&10 which is con-
sistent with the experimental upper limits =7.4

x1() '. For a better check of sum rule (8) we

have to await future experiments.
If we further assume a supervalidity of the

SU(3) for k-~, i.e. , if p~ satisfies also the
superconvergent sum rule

fdm' [p, (m')-p, (m')] = 0,

then we would get a superconvergent sum rule
retaining as before the p, ~, and y contribu-
tions:

Q 2 —G 2+6 2

p (t) cp

It has been emphasized in Ref. 2 that the infor-
mation content on symmetry breaking becomes
less and less with the assumption of stronger
and stronger conditions of superconvergence.
Thus one expects relation (8) or (6) to be sat-
isfied much better than the relation (10). In
fact for the experimental masses of p, ~, and

q, Eq. (10) is inconsistent' with Eq. (6). To
remedy this situation and to obtain more infor-
mation on symmetry breaking than given by
Eq. (6), we adopt the point of view that we have
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to take into account the SU{3)-violating effects
in order to obtain higher order superconver-
gent sum rules. For instance, we should con-
sider the first-order SU(3) symmetry-break-
ing interaction (T'8') in order to derive the first-
order superconvergent sum rule instead of Eq.
(9). For the second-order superconver gent
sum rule we need to take account of the second-
order effect of symmetry breaking, and so on.
If this idea is correct, then we should replace
Eq. (9) now by

Jdm'{ p, (m') + 3p, (m') -4p, (m')) = 0, (11)

since the left-hand side of Eq. (11) is zero to
the first order in T"'. Now, Eq. (11) leads
to

2+G 2 —&(4G 2 G 2)K* p

tain from Eq. (16) the branching ratios for e
and y leptonic decays as

r(v —all)
= (8.4 + 3.0) x 10

I" y-/l
r(cp —all)

= (2.7 + 1.3)x 10-'. (17)

G '/m '=f '=G /g
p p 77 p p7Tw

(18)

where f~ is the m-decay constant. One then
obtains

These results should be compared with the ex-
perimental branching ratio of (12 + 3)x 10
for (d —e+e ' and the upper limit of 7.4&&10-4

for cp —p p. .6 Finally, the branching ratio for
the leptonic decay mode of the p' can also be
compared if we use the current-algebra result'

From the asymptotic condition

lim [b, +'(k) —b, ' '(k)]=0, (13)

"' "' =4 OxlO-
r( p'- all)

(19)

we also obtain the relation

p p
(14)

G,'=(m „'/m ')G '
p p

We then compute

=1.34G ~ (15)
p

r{+—l l ) I (y —ll )=- =0.14, -( 0 -) --0.15.

Using the experimental branching ratio' I"(p- p p. )/I'(p'-all)=(5. 1+1.2)xlo ', we ob-

(16)

where we have retained the p and E* contribu-
tions only and have neglected the contribution
of the ~ meson. Experimentally the existence
of ~ is doubtful. However, even if it exists,
we know that G~ is of first order in SU(3) break-
ing, so that the contribution of the z meson
to Eq. (14) which enters as a term proportion-
al to 6~2 will be at least of second order in
SU(3) breaking, and may be neglected.

Now we can determine G(d, G&, and G~~
in terms of G by means of Eqs. (6), (12), and

(14):

m '(4m ' —m '-3m ')
G2 O' * P "G2 l03G2

Sm '{m '-m ') p
' p'

P P (d

m '(3m '+m ' —4m ')
(4) P P K

G 2 0 43'
cu Sm (m -m ) p p

P CP (d

which is also in reasonable agreement with
the experimental value.

We now turn our attention to the strong de-
cays of vector mesons. The K* width has been
calculated in Ref. 2, in good agreement with
the experimental result. Here we confine our
attention to the calculation of the decay mode
cp -ER. According to our philosophy we should
have

(oIv "'(0)I~K)&=«(v)/(24 v)"',
p, 0 (21)

and similarly 0& by replacing (d by y, one de-
rives the following sum rule in the same ap-
proximation of saturating the intermediate states
by v and y poles:

v G /m '+0 G /m '=0.
(d (d (d P P CP

On the other hand, in the exact SU(3) limit,
we must have (lC(P') I V&"'IK(P)) = 0. Thus,
when one sets

X(P') IV "'(o) I&(P))

{22)

= (4P0P0'v') "'(P +P ') „&(k'), (23)

lim fd xe (01T{V (x)V (0))lo) =0, (20)
Vk-~

since in the exact SU(3) limit this is an iden-
tity. Here V ' ' corresponds to the unitary-
singlet vector current with A, =v -,'. Defining
0 by
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with k'= (P-p')', one expects

lim E(k') =0,
oo

so that F(k2) should satisfy an unsubtracted
dispersion relation. Saturating intermediate
states again by co and y poles and noting that
E(0) =0, since the operator fd'x V~"'(x) is pro-
portional to the baryon number which must
be exactly conserved, one finds now

0=a g /m '+cr g
&u ~KK w y cpKK/m (24)

where g~KI7 (g&KK) is the coupling constant
for ~ (q&) to KK~ From Eqs. (22) and (24) one
obtains

&uKK yKK ~ cp' (25)

Moreover, if the usual electromagnetic form
factor of the kaon is dominated by vector me-
son poles then we must have in addition

G g /m '+G g /m '= —,'v3.
~ ~KK co cp yKK

(26)

Together with Eqs. (25), (6), and (18) this leads
to

lation' obtained on the basis of the algebra of
currents. However, in that derivation we must
make a rather unphysical limit MK-0 while
our new derivation is free from this assump-
tion. We remark also that Eqs. (18) and (27)
give us

g /g =2VSG /G,
yKK p7t n p p' (28)

which reduces to the standard SU(3) relation
if we replace G /G by cos8, where 8 is the
mixing angle. From Eq. (28) and using the re-
sult (15), we compute

I'(y -KI7) =5.0 MeV, (29)

which must be compared with the experimen-
tal value of (4 + 1) MeV.

In our approach, we never make use of the
so-called ~-y mixing theory. ' However, it
may be worthwhile to point out that Eq. (6) con-
tains information on this aspect. Indeed, in
the course of deriving Eq. (6) we might as well
have saturated the intermediate states by ~,
and ~„rather than p and co, where co, and co,

correspond to pure unitary-octet and -singlet
vector mesons, respectively. Then we would

get the relation

(m
g z=2&sl lG =-,'DsG /f . (27)

G /m +G /m =G /m 2+G 2/m (30)
co co p 'y 8 8 1 1 '

If we set f~ =fk, Eq. (27) is nothing but the re-
where G, and G, are defined analogously as
in Eq. (7). Using the notion of the v-cp mixing
theory, one can rewrite this equation as

/sin'8 cos'8 1 ) jcos'8 sin'8 1 ) m '-m
+ .. . + -- — --'G =sin28 -- GG .m' m'I ' ~m' m m') '

p 8 (d CO

Now, if A. is the measure of the SU(3) violation,
then G, =O(X) and hence G,' can be neglected
up to the first order in A. . Also, (m&'-m~')
may be regarded as a measure of a deviation
from the exact nonet symmetry~~ [or W(3) or
SU(6) symmetry] and we shall denote it to be
of the order A. '. Therefore, if one can neglect
terms of the order A2 and A. A. ', then the above
equation reduces to

sin'8 cos'8 1-+ = -+0 A.
2

AA.
' .0 A. , AA.

co cp 8
(32)

This is identical to the formula derived by Cole-
man and Schnitzer" some years ago, which
gives 8 =34'. Note that in this equation, the
mass terms appear in the denominator rather

than in the numerator in contrast to the usual
method 'o~'x
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The Kohn variational principle is extended to apply to scattering processes where a two-
particle bound state is broken up by a third particle.

In the past it has often proved that use of a variational principle' has been the most efficient meth-
od of making quantitative calculations of the properties of systems of several particles (more than
two). In particular, the Kohn-Hulthdn principle has been applied successfully to problems where
the open channels contain only two bound parts, as for example, electron-hydrogen atom scattering. '
In this Letter, we discuss how the principle may be extended to include open channels containing
three separated particles.

As an example, we take the case of three different particles of equal mass (m = —,') interacting through
two-body potentials that are superpositions of Yukawa potentials. We assume that each pair may
form a number of bound states labeled by a& with binding energies Ez (i =1, 2, 8 denotes the parti-
cle that is not bound). In practice the initial state of the system will contain one of these bound pairs,
say 2 and 3, and will be described by the state ( y) =

~ X,', p'), an eigenstate of H, =H, + V„energy
E, where B, is the kinetic energy of all three particles and V, the interaction between 2 and 3. We
work in the frame with total momentum zero, and p is the initial momentum of particle 1.

Using Eq. (184), p. 102, of Goldberger and Watson' we may write the scattering wave function cor-
responding to initial state I g) as

y+(p.) = g(p. ) + (2w)-'"8-'"JdZ. exp(ip . .Ii .)(E-Z'+is) '(If.
~
T+(E) I y),

where we have used a notation similar to Lovelace such that pi is a six-dimensional vector

p, =(X„Y,) =((3)' [r,-~(r2+r~)], (2) " [r,-r3]j
and

&, =(P„Q,) =((-)"'p, (2) "'[p -p ])

(2)

and similarly for i = 2, 3.
Alternatively, proceeding from Eq. (81), p. 79 of Ref. 3, taking the yf,

~ as eigenstates of Hz =H0+ V;,
we find

3

y (p.) =y(p. )+(2m) 8 'fdic. q- (Y'.) exp(iX. ~ P.)(E—Z +ie) (Z. Ir. ly)
2 iQ~ i Z g

3

+(2w) (-,') Q fdP y(Y.) exp. (iX. ~ P.)(E+E -p. +is) (X,P. [T(E) (y).
i Z 2 G Z

(4)
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