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A very crucial problem in a Reggeized the-
ory of strong interactions is that of Regge cuts.
Various authors have advanced strong theore-
tical reasons to justify the presence and pos-
sible importance of Regge cuts.’ The angular-
momentum singularities important for crossed-
channel asumptotic behavior have trajectories
of the form

o) = nat/w2)-n+1, 1)

due to an intermediate state containing » (iden-
tical) Regge poles, o (f). Here n=1 corresponds
to the “parent” Regge pole a(¢f) and integer

n >1 to Regge cuts.

From Eq. (1), one notices the ugly feature
that a Pomeranchuk pole (called P pole, here-
after) with aP(O) =1, generates an infinite num-
ber of Regge cuts all condensing to J=1 (at
t=0), which would give rise to an essential
singularity. Such a phenomenon is universal,
in the sense that every trajectory of whatever
quantum number would have a similar conden-
sation at its intercept at £=0. This is due to
the fact that the P pole has the quantum num-

bers of the vacuum and hence it can mix with
any trajectory to produce the infinite sequence
of cuts which, with aP(O)=1, condense at a,”(0)
=a(0). (See Fig. 1.)

In this Letter, we propose to resolve this
dilemma by a simple mechanism. We find some
very interesting consequences (twist effect,
vanishing total cross sections, etc.) and also
provide some experimental tests for our pro-
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FIG. 1. The pole and cut trajectories with the Pomer-
anchuk intercept ap(0)=1.
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posal.

The argument is simply this: One introduces
some parent Regge poles to provide the most
dominant singularity in the J plane (for a giv-
en process). However, iteration through uni-
tarity produces an infinite number of other
singularities (cuts) which have slopes which
are higher than the parent pole, a fact which
may invalidate the pole-dominance idea. If,
however, ap(0)=1-¢€ (¢>0), then all the suc-
cessive cuts are displaced to a,{%)(0)=a/(0)
-n€e, which tend to —» as n—~ .2 (See Fig. 2.)

This has various interesting consequences
apart from removing the essential singulari-
ty at the “parent” intercept «(0). (i) Since
the cuts produced by iteration are successive-
ly pushed lower and lower, the parent Regge
pole dominates (for —f£~0). A priori, there
is no reason to believe why this should be true
when €=0. (ii) The total cross section behaves
as

(S)_’ S—€,

o

T S oo
and hence would go to zero asymptotically (e
+#0).3*

Certainly in the diffraction-scattering region
there is ample reason to believe in the Regge-
pole dominance. The experimental situation
regarding the asymptotic behavior of the total
cross section is, however, far from clear.

(For a discussion, see Ref. 3.) It is perhaps
an even bet between constancy and a mildly
decreasing cross section. Thus, we are led
to investigate some further manifestations of
our hypothesis.

From Fig. 1, it is clear that the cuts inter-
sect with the pole only at £=0. However, in
Fig. 2 (e#0), the situation is remarkably dif-
ferent. Here a(t) crosses a '(¢) at ¢, (point
b), a,'(t) crosses a 2(t) at t, (point ¢), and so
on. The leading behavior as ¢ is decreased
is thus not given by «(¢) but by the “effective”
trajectory, @(Z), which connects the points
abcde -+ +. One may visualize this situation
by regarding this as an “exchange-of-tails”
effect between the singularity surfaces.® Any-
way, the leading effective singularity @ () is
therefore constantly “twisting” (i.e., changing
its curvature) as a function of ¢ as it encoun-
ters other Regge cuts —even when the “parent”
pole «a () is taken to be a straight line.

From the diagram it is clear that on the pos-
itive-f side, however, the trajectory remains
a straight line, since all the extrapolated cuts
are systematically lower. Thus, the known
part of the trajectory spectrum, where the
particles and resonances lie, remains in ac-
cordance with the experimental straight-line
behavior.

To get an idea regarding the magnitude of
twisting, let us look at a specific example of
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FIG. 2. The pole and cut trajectories with the Pomeranchuk intercept o P(0) =1-€. The effective leading singular-
ity (in the negative-f region) is the curve abcde~-+. On the positive-t side, pole trajectory a(f) dominates.
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the p trajectory and the cuts generated in col-
lusion with the P pole. If we choose for the
parent p and P poles a linear shape, then the
nth cut-trajectory function has the form

(n) aPra ’
o ) =a (0)—n€+,—p—,t, 2)
c p ag +nap

where ozp(O) is the p intercept at £=0, and ap’,
ap’ denote the P and p slopes, respectively.
If we choose ozp’z% (Bev)~2, a,’~1 (BeV)™2°
we obtain for the slopes of the first and the
second cuts &, ~7 and a,®”~0.14. The
“crossings” between the p pole and a,®’, and
between a,*’ and a,®, occur at energies ¢,
=-%€ and t,=-9¢, respectively. In Ref. 3,
€~0.07—in any case, €50.1. Thus, -#,~0.09
to 0.13 (BeV)? and —£,~0.6 to 1 (BeV)?.. In the
diffraction-scattering region [#1£0.5 (BeV)?],
therefore, one needs consider only the p pole
and a,")." The “average” slope in this region
should be =3 (BeV)™2, which is in accord with
the phenomenological trajectory as obtained
by Phillips and Rarita.®

Now is there any experimental confirmation
of such a twisting behavior for the leading tra-
jectory function (for negative ) from high-en-
ergy phenomenology ? We would like to think
the answer is yes. We shall present the follow-
ing pieces of evidence in support of this:

(1) In charge-exchange mp scattering, 7~ +p
—~7°+n, only the p exchange need be consider-
ed. There the extensive data analysis by Phil-
lips and Rarita® gives for a linear p trajecto-
ry the form

ozp(t)=(0.53i0.003)+(0.47i 0.02)¢--. (3)

This slope is about half of the p slope on the
positive side. [ap’ =1 (BeV)~? in the resonance
region.]

(2) In another charge-exchange scattering,
T +p =~n+mn, only the 4, trajectory can be ex-
changed. Again one finds that A, has a lot of
curvature in the negative-t region.? Their “best”
A, trajectory seems to be

@, (t)=(0.37 to 0.43)+ (0.50 to 0.80)t +---. (4)

If one extrapolates this to the positive side,
at the A, mass (=1.3 BeV), the trajectory is
only around 1 instead of the now established
value of spin 2 for A,.

In general, it seems to be true that the slopes
on the negative side are much lower than on

the positive side giving support to our hypoth-
esis.

(3) The phenomenon of “dip” in the differen-
tial cross section where the exchanged trajec-
tory is at a “nonsense” (unphysical) value has
been widely hailed as a triumph of Regge poles.
However, in the Phillips-Rarita analysis,? the
value of ¢ at which the p trajectory is at 0 (its
unphysical value) is not the value one would
obtain by extrapolating a straight line from
the resonance side. Thus, it is the slope of
the twisted trajectory which gives the correct
t at which the dip phenomenon occurs. The
same remark holds for the ¢ value where ozp(t)
= —%, where again the pole contribution vanishes.

The numbers for our slopes seem consistent
with the phenomenological analysis. As a by-
product, we are provided with a “natural” ex-
planation why only the parent pole and the first
(few) cut(s) should in general be dominant in
the diffraction region.

To summarize: We conjecture that the sim-
plest way to avoid the J = (0) disease (conden-
sation of infinite Regge cuts there) is to have
the Pomeranchuk intercept slightly less than
1. Thus, cross sections would asymptotical-
ly tend to 0. Experimental evidence in this
regard is quite unclear. However, with this
hypothesis, the leading singularity generated
by the parent Regge pole in collusion with the
Pomeranchuk pole (which is assumed straight)
is constantly changing its curvature (“twist
effect”).!® This is perhaps easier to test in
suitably chosen bins of ¢ values for the charge-
exchange differential cross section data. We
have presented above some evidence in support
of a twisted leading singularity.

A detailed analysis of the differential cross-
section data along these lines is currently un-
der preparation. .

I would like to acknowledge fruitful discus-
sions with Professor N. Cabibbo, Dr. G. De
Franceschi, and Dr. G. Preparata. Professor
Cabibbo also kindly read the manuscript and
suggested several improvements. The contin-
ued hospitality and support of the Gruppo Teo-
rico, Universitd di Roma, is gratefully acknowl-
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105t the 2% singlet Pomeranchukon with a mass of 850~
950 MeV really exists, the positive-side slope of ap
would be ~1 (BeV)™2, Again, the twisting mechanism
can account nicely for its slope being only ~3 (BeV)™2
on the negative ¢ side.
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The proof of the Fubini—Dashen—Gell-Mann sum rule from the infinite-momentum lim-
it is studied again taking the locality of the currents into account. It is shown that the
sum rule cannot be derived from the p —* method proposed by Dashen and Gell-Mann.

Some time ago, Fubini' and Dashen and Gell-
Mann? derived the same sum rule by two com-
pletely different methods. Fubini made use
of commutators involving one space component
of the current in such a way that the derivation
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deals only with covariant quantities all through
the proof. Dashen and Gell-Mann, on the oth-
er hand, only introduced the commutator of
two time components, thus working with non-
covariant expressions. In this last method



