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often triplet excitons. In that case the new phase
i' will have a magnetic order, as will the sub-
sequent phases. Similarly, starting from the
metallic side, the first Qverhauser instabili-
ty may well be a spin-density instability, so
that the new phase m' will be magnetic, as will
subsequent phases. Obviously all kinds of com-
binations of nonmagnetic and magnetic insta-
bilities are possible.

We suggest that the above considerations
provide a framework for the interpretation
of distortive and/or magnetic phase transitions
of small-gap solids. A fuller account is in

preparation.
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Current theories of local magnetic moment formation in metals are essentially Hartree-Fock the-
ories'~~ and certain improvements thereon. ' These theories generally lead to implausibly sharp thresh-
old conditions, and raise certain difficulties due to violation of rotational invariance.

In this note we suggest the possibility of calculating directly the quantities susceptible to measure-
ment, in particular, spin susceptibility, using only standard many-body perturbation theory. The
model is a degenerate electron gas described by a Hamiltonian consisting of the kinetic energy, Cou-
lomb interaction, and a structureless impurity potential V.

The spin susceptibility at wave number q and frequency 0, due to a periodic magnetic field of wave
number q and frequency 0, is the analytic continuation to 0+i' (5 &0) of the function

2(gl p)'
~

dp ldp2 II
(2p)' P] 1' 2 2' 1+q' 1+ n'P2 q ' 2 n

(0&(d2

from the even points ivn—- 2n~i/P, where P
=1/kT, T is the temperature, and k Boltzmann's
constant. 8 is the two-particle Green's func-
tion with a "triplet" assignment of spin sub-
scripts (see below). The ~'s are the "odd"
points (2n+1)v/P. (The notation is that of Abrik-
osov, Gor'kov, and Dzyaloshinski. ')

Wolff' has treated a "single-band" version
of the pres ent Hamiltonian in Hartr ee- Fock
approximation, replacing the total potential

(V+Hartree-Pock) by an average over one band.
This results in an s-wave scattering problem
with a zero-range force. He found a threshold
condition on the parameters of the problem,
beyond which "up"- and "down"-spin electrons
see different Fock fields. We shall eventual-
ly perform a similar averaging, but begin with
an exact formulation.

The analog of the Wolff condition in many-
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body theory is that the Bethe-Salpeter equation
for a certain reducible vertex I'(k, ~» k &u„

k, +q, &u, + v, k, -q', ~,-v) should have a diver-
gent solution. (As the coupling strength is in-
creased the divergence first occurs at v=0. )

Our main point is that such an instability will
occur only if uncorrected propagators are used
in the Bethe-Salpeter equation. When I" becomes
large, so does the self-energy, so that the prop-
agators diminish, inhibiting the instability.

Using 6-function normalization of the plane-
wave eigenfunctions, it is possible to write
the thermodynamic Green's functions, self-

energies, and vertex functions as sums of two
parts: one with a diagonal singularity (a mo-
mentum-conserving 5 function), and another
without such singularity but with off-diagonal
elements in momentum space. An important
simplification occurs in the limit of zero im-
purity concentration. The diagonally nonsingu-
lar part does not enter the equations for the
diagonally singular parts (for finite concentra-
tions this is no longer true). A formal process
for solving the zero-concentration problem
is given in the following definitions (D) and
derived equations (E): Total Green's function
(E) (Dyson's equation),

I/

g (kk', (u ) = (27t') 5(k-k')g (k, (u )+g (k(u )Jl ~ Z (kk", Id )b(k", k', (u ),g (k, cu ) = /(i(u -e + e ). (2)

Tota, l self-energy (D),

Z (kk', e ) = (2m) 5(k-k')Z(kcu )+Z(kk', v ).

Dyson equation for pure medium propagator (E),

g(k, (u )=g (k(u )+g (k(u )z(Ru ).

T matrix (D),

li

T(k, k', i(u )g(k'(u )= k, Z(kk", (e )g(k"k'(e ).
n n g 27T n n

Nonsingular part g(kk'&u ) (D),

Then (E)

8(kk'(u ) =(2m')'g(k(u )5(k—k')+g(kk', (u ).
n yE n

(6)

l/

g(kk'(d ) =g(k(d )Z(kk'M )g(k'c )+ —,g(kM )Z(kk"(d )g(k"k'(d ).
n n n n (2r)' n n n

From Eqs. (5)-(7) we get (E)
If

T(kk'i(u ) =Z(kk'(u )+ ~z(kk"(u )g(k"Id )T(k"k'i(u ).n n (2m)' n n n
'

(7)

Finally, from perturbation series it is seen that

Z(kk'v )+ V(kk')+Z (kk'u& ),n n '

where &(kk') is the bare-impurity potential, and Z~ is constructed exactly as for the uniform gas out
of vertex functions and propagators [with p(kk'& n) replacing g(k& n), etc.], and with the (one and only)
diagonally singular term subtracted off.

We assume the uniform gas to be nonmagnetic. Then the BS equation for the diagonally singular part
ID of 1 has a finite solution for v, zero included. The local moment singularity, if any, must show
up in the nondiagonal part I'ND. The detailed structure of the BS equation will be discussed in a forth-
coming paper; here we state it only schematically with primed indices summed over, and a given in-
dex denoting energy, momentum, and spin orientation. The BS equation for the I reducible in the
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channel relevant for the calculation of /II reads [ 1 and 2 ingoing particles, 3 and 4 outgoing see Fig
1(a.)]

I"(12;34) = I' (12; 34) + F (13';31') 9 (1'4') 9 (2'3') I'(4'2; 2'4)(f ) (&

/'X
where F~ & is the sum of all vertices irreduc-
ible in the channel presently under considera-
tion. g is the exact one-particle Green's func-
tion. It is advantageous to effect a separation
with respect to spin subscripts':

I' (12;34) = —I"
O.

x C)-2~304

+r (u e —,'c u )
0~

0'4 020'~ CT~ 0'3 0'2 CT4

''L

and similarly for I"~ j. Equation (9) is then
seen to hold separately for I's with subscripts
a and b. Only I'

f, is needed in Eq. (1) and only

Fy shows a tendency to instability. We now

extract the nonsingular part (9ND) from Eq.
(9) assuming weak, zero-range, electron-elec-
tron coupling v. The bare vertex is diagonal-

ly singular, and has spin components a, b pro-
portional to 2w and -v, respectively. The low-
est order contribution to the kernel I g~ gg of
(9ND) comes from this bare vertex. The low-

est order nonsingular contribution to the driv-
ing term of (9ND) is O(n ) and comes from two

sources: (1) the integral term of 9 with I'y(~),
I"g -v, and the singular part removed, giving
v(99 —SD&D)v, and (2) second-order contribu-
tions to I"&(~). The "other" particle-hole chan-
nel [Fig. 1(b)] contributes nothing to I'

f, (~).

Particle-particle channels do contribute but
their temperature dependence raises special
problems outside the scope of this Letter. g

must now be made consistent with I". The dom-
inant contribution Z~ is shown in Fig. 2(a).

4

Evidently, in lowest approximation to the ker-
nel of (SND) this diagram may be obtained by
closing the 3 tail of the integral term in (9ND)
onto the 2 tail, with acquisition of a minus sign
and some numerical factors. Hence, neglect-
ing some small terms O(v ), Z~ is also giv-
en by the diagram in Fig. 2(b). Finally, in the

present approximation I" depends on the four-
momentum transfers 1-3, 2-4 only. In par-
ticular, I'y depends on v only, and not on ~g &2.

Going over to the one-band, zero-range mod-
el of Wolff we make the replacement

—

J g(k(u) ~=0:(i(u),
1 ) - dk

where V is the volume occupied in k space
by one band. (Vp

' = Vz the volume of one atom-
ic cell. ) Retaining only s-wave amplitudes and

assuming a zero-range bare potential V(kk')
= V(independent of k), it is seen that Z~ loses
its k dependence, provided 7' does. But that
is indeed consistent with (8). Henceforth, we
write V~Z(ice) for Z(kk'c'), V~T(ice) for T(kk'ice),
etc. , because in the present normalization they
are proportional to the atomic volume. Thus

(8) becomes

T (i(u) = Z (i(u) + Z (i(u)F(i(u)T (i(u).

Also, introducing l, dkdk'
V k(i~) = —, S(kk', &u)

(

2' 2

P /1

&lanai

(a)

3

(b)

FIG. 1. (a) The Bethe-Salpeter equation in the rele-
vant particle-hole channel. (b) The "other" particle-
hole channel does not contribute to I'y.

(b)

FIG. 2. (a) The dominant contribution to Z when I'&

becomes large. (b) Aside from terms O(v ), Z~ is al-
so given by this diagram.
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we see that

h (i(u) = F(i(u) + 5(i(u)T (i(u)F(i(u).

Setting the momentum average of I~ equal to
y(iv), we can solve the BS equation, obtaining

y(i v)

v (1/P)P [h (im)h (i&@—i v) —F(im)F(iw —i v)]

1+ (v/P)Q h (i(u)h (i(u-i v)

Z~(i& ) is now given by the Dyson equation Z~(i&u)
= V —5 '(i&u)-h '(i&a), but, as briefly discussed
above, it also equals —4Q vy(iv)h(iv+i&u). Hence,
if we define h, (iv) as the s-wave zero-range
projection of the Green's function of an elec-
tron gas with impurity potential ~, and with
self-energy corrections (but not vertex correc-
tions) included [i.e. , if ho '(ice) =& '(ie) —V],
we finally get

(11) as

1 1 3
(, ) (, )

+ y(0)h (iK)

3
= ——g y(iv)h(iu)+iv)

4 vo0

whose solution is

h = (1/2Q)[h, '-(h, '—4Q)"'], (13)

and begin by solving this equation with the right-
hand side equated to zero. '

The h so obtained can then be used for begin-
ning the iteration. Near threshold, y can be
simplified [assuming that the uniform medium
is so nonmagnetic that (v/P)QS(im)F(iu) «1].
The initial h is then found from the quadratic
equation

1/h —1/h =Qh,

1 1 3
Q y(iv)h (iv+ 2C'd).

ho ZQl h i(d

The two simultaneous nonlinea. r equations (10)
and (ll) for h and y should not exhibit instabil-
ity. From their solution one can find a suscep-
tibility at zero frequency, averaged over all
wave numbers of the applied field: From (1),
and the relation between gII and I,

Average total moment on site
Magnetic field

2

= (gp)y(0) —
, Q [h (iv)]' . (12)B

As a, crude method of solving (10) and (11),
which should be correct at moderately high
temperatures, we note that if we were well
below threshold, we would simply iterate (ll),
writing h =h, in the right-hand side. It is easy
to show that each term of the sum is of order
vkT/V Suppose, h.owever, we are near thresh-
old so that y(0) is very large. Then we rewrite

where

Q =—1+—Q[h(iu))]' .
3'0 'U

4p p„
The square root in (13) is defined as having
a branch cut from h, = —(2Q) '~' to +(2Q)
this ensures thath goes to h, as ~-+~. As
an example consider the case of a V giving
a resonance of width & at energy xo. In the
vicinity of xo, we may write

1 1
V 1—V5'

=A/[(x-x, )+iA sgn6],

whereA=-1 /V' F, (x)0, g=F, (x0)/F, (x ),
F(x+i5) =Fz+iF. , and xo is that root of VF
= 1 at which F~, is negative (neglecting self-
energy effects of the uniform gas,

p( )
1 1 d k

V „z—e +~ (2~)'p" h F

and so Fi is negative so that b, is positive).
Then from (14)

(14)

h(x+ i5) = -- {(x—xo+i 6 sgn5) —[(x—x, +id, sgn5)2 4QA2]'~'].

Converting the sum in (14) to a contour integral around the real axis and neglecting its very weak
temperature dependence we find

4 2A2
-A Q =—1m[a~ (-xo+ id ) -4A'Q (—x, + iA)-&~{(-xo+

id�

)' 4A'Q ]~I']. —
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which is —~pQ goes like I/kT, and the suscep-
tibility, which can be written =(gpB)'~p(3/
4PQ —1/v)', will have a. leading 1/T term On
the other hand, if v «vc, (16) has a root only

by dint of the —A~Q term on the left-hand side
of (16). This root is of order Q=v/P. y is
then temperature independent, and so is M/H.
The transition between the two regimes is,
of course, smooth. Some computed results
are shown in Fig. 3.

We note that there is no trace of the Kondo
effect. This may be due to one of several short-
comings. For example, the emphasis on the
y(0) term in Eq. (11) obviously becomes unjus-
tifiable at very low temperatures. Also, all
particle-particle correlation eff ects, which

frequently lead to logarithmic temperature
dependence, have been neglected. Studies of
these questions are still in progress.

20
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I

1.0 3IIkT

4A

Equations (15) and (16) are especially conve-
niently analyzed if the resonance is at the Fermi
level, x, =0. The following behavior is then
found: Disregarding the term A'Q, on the left-
hand side, Eq. (16) has a, root only if the ini-
tial curvature of the right-hand side nea, r Q
=0 exceeds that of the left-hand side. This
happens if v &vc ——n'&/A holds (Wolff's condi-
tion). If v»vc the term A2Q can be totally
disregarded, Q becomes independent of P, y(0)

FIG. 3. Reciprocal susceptibility arbitrarily normal-
ized to the susceptibility at 3nkT/4A= 0.001. For v/vc
«1, the whole series in Eq. (12) should be taken into
account.
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