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A number of recent papers'~' have discussed
a phase which is expected to occur at low tem-
peratures in solids with a small gap, positive
(insulators) or negative (semimetals). All pre-
vious studies, except for the work of Zittartz,
discuss in detail only the simplest case in which
the conduction band and the valence band are
both taken as spherical. In this case, the new
phase is found to be an insulator in the sense
that at zero temperature there is a finite ex-
citation energy for charge-carrying excitations.
This is, however, an exceptional result. Zit-
tartz, ' in studying the case of valence and con-
duction bands of different shapes, has already
found that the new phase may have a vanishing
excitation energy for single-particle-like ex-
citations.

In the present note we wish to present a qual-
itative discussion of the general situation, which
reveals a, remarkable phase diagram [Fig. 3(b)]
with an infinity of phases each of which has
both metallic and insulating regions. These
phases differ from each other by having eith-
er different spatial order parameters, differ-
ent magnetic order, or both.

Our considerations neglect a number of im-
portant effects, such as the distortion of the
nuclear lattice (regarded as fixed), many-val-
ley effects, imperfections, etc. We are there-
fore not certain if real physical systems can
actually exhibit such a fantastic phase diagram.
However, we believe that the general features,
at least, of the present discussion are relevant
for actual small-gap solids at low temperatures.

The entire subject may be viewed as a mani-
festation of electron-hole instabilities.

We begin by considering a two-band system
whose energy-band diagram is schematically
shown in Fig. 1(a). The (single) maximum of
the valence band is taken at k~0, the (single)
minimum of the conduction band at kb . We
denote the energies of the two bands by S~(k —k~'),
Sb(k —kb') and write w-= kb —k, G —= Sb(0) —hu(0).
We assume, as is in fact the case, that the
two bands have different anisotropies. For
the moment we consider spinless fermions
and hence neglect possible magnetic effects.

In a normal insulator there exists a band
of collective modes of the electron-hole-pair
type, the excitons, with positive excitation
energy. That is to say, the maximum binding
energy F~ (taken as positive) is less than the

gap G.
We now consider what happens when one chang-

es some parameter, n (such as the external
pressure), which, in the absence of many-body
effects, would reduce the gap G to 0 and then
make it negative.

When G &Z& [see Fig. 1(a)], the original ground
state becomes unstable against exciton forma-
tion and a new type of ground state is formed. '
The new occupied eigenfunctions are linear
combinations of Bloch waves of the original
bands,

, (k) =u-cp (k) —n-y (k),a'kakb
where y~(k) and cpb(k) denote the Bloch func-
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intermediate stage, shown in the center part
of Fig. 1(b), and later a stage shown in the right-
hand part of Fig. 1(b). One finds that the gap
between S~~ and S& ~ becomes the smaller,
the deeper the "quasipenetration" of the two
bands is. Finally, because of the anisotropy
of the bands, the lowest point of St, i, say St, i(k~i ),
would become degenerate with the highest point
of S i, say S I(k 10).

In fact, this cannot happen. For just before
this we have the situation shown in Fig. 1(c),
with an extremely small gap O'. One must now
recall the existence of another type of exciton,
formed from holes near bio and from electrons
near kg ~', with binding energy E~ ' against which
the previous grounds state becomes eventual-
ly unstable, as soon as O'-E&'&0. This leads
to a new insulating ground state with occupied
wave functions of the form
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second excision

„(k)=u-'y, (k) —u-'p, (k),

and energy S ii. The new potential includes,
in addition to V', also

V" = A" cos(w' x+ y'),

(4)

FIG. 1. The insulating side. (a) Energy bands and
exciton band of the normal insulator. (b) The new ener-
gy bands after the first excitonic transition for succes-
sive values of the external parameter (e.g. , pressure).
(c) The second excitonic instability.

where w'=k~i' —k i, as well as other new terms
involving w and w''. In addition there exists
also a band of unoccupied states,

q„„(k)=u-'(k)q, (k)+u 'p, (k),

tions of bands a and b with momenta k + k
and kg +k. It is evident that in this state there
exist components of the charge density which
have wave numbers +w, and a corresponding
self -consistent potential

V'(r) = X' cos(w r+ y),
where y is a phase. 4 In addition to (1) there
exist in the new potential, which includes V',
excited single-particle states

y, (k) =n y(k)+u--y (k).

We denote the single-particle energies corre-
sponding to (1) and (3) by Szi(k) and Sf, i(k) and
show these in the left-hand part of Fig. 1(b).
We eall G' the gap between the new bands.

We now reduce G' further. Eventually the
two bands would seem to penetrate each other.
However this cannot happen, since the Hamil-
tonian connects pairs of states (a', k), (b', k)
with the same 0 [see, for example, the poten-
tial V'(r), Eq. (2)]. We therefore reach an

with energy S~ ii. We note that the situation
is completely analogous to that of the first in-
stability.

Hence we conclude, by induction, that start-
ing from the normal insulating state we pass
through an infinity oX insulating phases before
the gap for single-particle excitations finally
vanishes. At each state we introduce a new
undulation in the charge density and in the po-
tential, such as V' and V", with new wave vec-
tors w', w" ~ ~ ~ as well as their linear combi-
nations. The wave vectors w', w", ~ ~ ~ become
rapidly very small.

Now we make a fresh start from the opposite
end. We begin with a normal semimetal shown
in Fig. 2(a). SF is the Fermi level and the
gap G:—St, (0)—S (0) is now negative. The bands
are again assumed to have different anisotro-
pies.

We now change our external parameter n
to make JGl smaller and smaller. It can be
shown that when the number of carriers becomes
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FIG. 2. The metallic side. {a) Energy bands of the
normal semimetal. (b) Energy bands after the first
Overhauser transition for two different directions of k.

small enough, the normal ground state becomes
unstable against the formation of an Overhaus-
er charge density fluctuation' of wave vector
w. This may also be regarded as the appear-
ance of bound electron-hole pairs. The result-
ing self-consistent potential now contains a
new term of the form of Eq. (2), and again we
have wave functions of the form (1) and (2),
and new energy bands S~~(k) and Sf, I(k). These
are shown in Fig. 2(b), where we show the en-
ergy as function of k in two different directions
(the band anisotropy is essential here). Evi-
dently, we now have a new semimetallic phase.

Changing our parameter n, so as to reduce
the number of carriers further, eventually
must lead to a new Overhauser instability, which
occurs just before the new gap G' becomes
zero and involves holes from the vicinity of
the new valence-band maximum 8 ~(k I') anda a'
electrons from the vicintiy of the new conduc-
tion-band minimum, Sb.(kf, lo). The new poten-
tial will, among other terms, contain one of
the form of Eq. (5), where w'=kg I' —k~1' (iw'I
« iw I). Again we conclude, by induction, that
there will be a succession of an infinite num-
ber of metallic phases before the (negative)
gap finally vanishes.

Thus, as function of n, we have schematical-
ly the situation at T = 0' shown in Fig. 3(a).
Here m is the normal semimetallic phase, m',
m", - ~ ~ more and more distorted metallic phas-

(b)

FIG. 3. The excitonic phases. {a)Succession of phas-
es, at 1'=0, for different values of m; I, metallic;
i, insulating. The dotted interval contains an infinity
of rn and i phases. {b) Total phase diagram, showing
an infinity of nested phases.

es; i is the normal insulating phase and i'
' l1s', ~ ~ ~ more and more distorted insulating phas-
es.~ On the basis of the simplest model, pre-
viously considered, ' we tentatively complete
the "phase diagram" by adding the temperature
dependence of the instabilities. This leads
to the schematic phase diagram of Fig. 3(b).
The phase boundaries form an infinite nested
set. Each phase is characterized by a fixed
number of additional wave vectors which oc-
cur in the Fourier expansion of the electron-
ic density. In the normal phase, P, this num-
ber is 0; in P' it is I (the wave vector w); in
I'" it is 2; etc. It will be seen that at T=O,
each phase has a metallic and insulating region.
Thus for finite temperature it is not possible
meaningfully to describe any phase as either
insulating or metallic. We expect the sequence
of transition temperatures T ' T " T "' ~ ~

to be rapidly decreasing and hence more and
more difficult to observe.

A few remarks about the original higher ex-
citonic bands of the normal insulator i. As
n is changed towards n, [see Fig. 3(a)], the
energy bands become altered and hence so do
the excitons. Whenever the minimum excita-
tion energy of an exciton band becomes equal
to the energy band gap, an excitonic transition
of the type discussed will occur.

So far we have neglected spin. When this is
included we find the following new possibilities:
Starting from the insulating side and with a
nonmagnetic phase i, the excitons giving rise
to the first instability would be expected to be
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often triplet excitons. In that case the new phase
i' will have a magnetic order, as will the sub-
sequent phases. Similarly, starting from the
metallic side, the first Qverhauser instabili-
ty may well be a spin-density instability, so
that the new phase m' will be magnetic, as will
subsequent phases. Obviously all kinds of com-
binations of nonmagnetic and magnetic insta-
bilities are possible.

We suggest that the above considerations
provide a framework for the interpretation
of distortive and/or magnetic phase transitions
of small-gap solids. A fuller account is in

preparation.
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Current theories of local magnetic moment formation in metals are essentially Hartree-Fock the-
ories'~~ and certain improvements thereon. ' These theories generally lead to implausibly sharp thresh-
old conditions, and raise certain difficulties due to violation of rotational invariance.

In this note we suggest the possibility of calculating directly the quantities susceptible to measure-
ment, in particular, spin susceptibility, using only standard many-body perturbation theory. The
model is a degenerate electron gas described by a Hamiltonian consisting of the kinetic energy, Cou-
lomb interaction, and a structureless impurity potential V.

The spin susceptibility at wave number q and frequency 0, due to a periodic magnetic field of wave
number q and frequency 0, is the analytic continuation to 0+i' (5 &0) of the function

2(gl p)'
~

dp ldp2 II
(2p)' P] 1' 2 2' 1+q' 1+ n'P2 q ' 2 n

(0&(d2

from the even points ivn—- 2n~i/P, where P
=1/kT, T is the temperature, and k Boltzmann's
constant. 8 is the two-particle Green's func-
tion with a "triplet" assignment of spin sub-
scripts (see below). The ~'s are the "odd"
points (2n+1)v/P. (The notation is that of Abrik-
osov, Gor'kov, and Dzyaloshinski. ')

Wolff' has treated a "single-band" version
of the pres ent Hamiltonian in Hartr ee- Fock
approximation, replacing the total potential

(V+Hartree-Pock) by an average over one band.
This results in an s-wave scattering problem
with a zero-range force. He found a threshold
condition on the parameters of the problem,
beyond which "up"- and "down"-spin electrons
see different Fock fields. We shall eventual-
ly perform a similar averaging, but begin with
an exact formulation.

The analog of the Wolff condition in many-


