
VOLUME 19, NUMBER 8 PHYSICAL REVIEW LETTERS 21 AUGUST 1967

COLLECTIVE COORDINATES IN CLASSICAL SYSTEMS*

A. Rahman
Argonne National Laboratory, Argonne, Illinois

(Received 13 June 1967)

c(~, t) =(z (0)z (t)), (2)

Let rj, vj, j=l, ~ ~,N, denote the positions
and velocities, respectively, of a classical
system of Nparticles, each of mass M; Zwan-
zig' has suggested that

NJ (t) =N '" P (~ v.) exp(imp ~ r.)
K

should have characteristics of a collective co-
ordinate, i.e. , it should have a damped oscil-
latory behavior.

In this communication we shall consider the
properties of the function

Hence

F (~, t) = (-i)'(Z (-t)Z (0))

C(P&-, t).

or, inversely, since F (Tc, 0) = 0, we have

F (T(, t) =F (7, 0)-f (t-u)C(k, u)du.

From (3) and (4) we see that aPS(Tc, &u) is the
spectral function of C(IT, t), i.e. ,

C(T&, t) = f+ exp(i(ut)(u'S (X, u))d( (6)

which is called the autocorrelation of the co-
ordinate Z~(t); (~ ~ ~ )T denotes thermal averag-
ing. It will be shown that (i) the spectral func-
tion of C(t, t), i.e. , its Fourier transform,
can be obtained directly from inelastic neutron
scattering experiments; (ii) this spectral func-
tion is peaked at a nonzero value of frequency,
i.e. , C(v, t) has an oscillatory behavior, for
all systems; (iii) molecula. r-dynamics' calcu-
lations on liquid argon show that the oscillatory
behavior of C(Ã, t) is intimately related to S(ic),
the Fourier transform of the pair correlation
function.

Consider first the coordinate
N

Q (t) =N 'i'g exp[inc ~ r. (t)j.

Let its autocorrelation, namely (Q~(0)Q p&(t))T,
be denoted by F(TT, t) Then the F. ourier trans-
form of F(w, t) is the scattering law S(Tc, v) which,
in the first Born approximation, gives the prob-
ability of scattering a plane wave off the sys-
tem with a momentum change SZ and energy
change S~. It follows, therefore, that

F(7, t) = f exp(i(ut)u-PS(x, (u)d(u. (3)

Using Q+~(t) =+iJ~~(t) and the fact that in equi-
librium all thermal averages are independent
of the origin of time, we get

= i(Q (-t)z (o))T.

Thus, using inelastic neutron scattering data
we can get ar'S(Z, v); then, for given value of
K~ its Fourier transform will show the oscil-
latory behavior of C(77, t). Note that C(v, o)
= z'kBT/M and I ~ C(Pc, t)dt =0.

It is important to realize that &u'S(Tc, v) will
show a maximum in its dependence on ~ at a
certain v(Tc) for all systems, including an ideal
gas. In this sense C(77, t) is oscillatory for
all systems; however, the manner in which
the oscillatory character depends on K is what
makes C(Pc, t), and hence uPS(Tc, &u), a very use-
ful function to consider. The results for an
ideal gas are instructive. In the classical lim-
it, for an ideal gas, S(tc, cu) = (M/2mkBT v)' '
x exp(-M ~'/2 K'k

BT ), and hence &u'S(z, v) has
a maximum in co at

( (~) = ~(2k T/M)'".
B

Since for large enough z (short-wavelength lim-
it), S(Z, &u) tends to the ideal gas form for all
systems, it follows that Eq. (7) gives the large-
K behavior of &u(Yp) for all systems.

In the case of substances for which the inco-
herent neutron scattering cross section is not
negligible (argon, sodium, etc. ), the observed
~'S (~, ~) will be the transform of an appropri-
ately weighted sum of C(t, t) and Cs(Tc, t), where
C~(Tc, t) is the autocorrelation of (Pc ~ v) exp(inc ~ r),
r and v being the position and velocity of any
one particle. Hence, under favorable circum-
stances, we may even observe two peaks in
&u'S(P&, v), one arising out of the transform of
the "self" part Cs(Tc, t) and the other from the
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FIG. 1. S(K, a) for liquid argon, obtained from mo-
lecular dynamics data; arrow indicates (dmm, (K), the
position of the maximum. 0

0 1.0 2.0
~ in

collective part C(Z, t).
Molecular dynamics' gives us the positions

and velocities of the particles as a function of
time for a system of a few hundred particles;
this is just the information required to calcu-
late correlations like F (Tc, t) and C (k, t). A cal-
culation on liquid argon, at a density of 1.407
g/cc and temperature 76'K, has been made
and the data analyzed to obtain F (z, t); no oscil-
latory behavior is found in +(z, t). On the oth-
er hand, co S(v, &u), shown in Fig. I as a func-
tion of ~ for a few values of ~, has a well-de-
fined peak at some &u(K). In Fig. 2 we have
plotted ~(v) for all the K for which the calcu-
lation was made; also shown in Fig. 2 is the
structure factor S(tc)[=5'(lc, t = 0)j wh—ich is the
Fourier transform of the pair correlation func-
tion g(r). In another paper we shall present
the results in greater detail.

In conclusion we note that a treatment of a
collective coordinate, like, e.g. , J~(t) of Eq.
(I), as a dynamical variable always involves
the linearization of the equation of motion', the
approximations involved in the linearization
are usually hard to assess or to justify. On
the other hand, a, correlation like C(P&, t) of
Eq. (2) is seen to have a peaked spectral func-
tion without recourse to any approximation;

FIG. 2. The structure factor S(K) and &m~(K) shown

as a function of K. The straight line has the slope
(2 k BT/M)

the fact that this function, namely &u'S(T&, &e),

is a directly observable quantity adds further
interest to a theoretical analysis of C(w, t).

It is fruitless to discuss whether the behav-
ior of C(k, t) discussed above proves the exis-
tence of "phonons" in liquids. Whether or not
the position-density fluctuations in a system
have an oscillatory behavior, we have shown
that the momentum-density fluctuations always
have an oscillatory behavior and hence have
a spectral function peaked at a nonzero frequen-
cy. We recall that in the theory of liquid he-
lium, too, it is the momentum density which
is a well-defined oscillatory collective coordi-
nate.

I am indebted to J. E. Robinson and Shulamit
Eckstein for their keen interest in the prepa-
ration of this paper.

*Based on work performed under the auspices of the
U. S. Atomic Energy Commission.
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