COLLECTIVE COORDINATES IN CLASSICAL SYSTEMS*

A. Rahman

Argonne National Laboratory, Argonne, Illinois
(Received 13 June 1967)

Let $\vec{r}_{j}, \vec{v}, j=1, \cdots, N$, denote the positions and velocities, respectively, of a classical system of N particles, each of mass M; Zwan$z^{2}{ }^{1}$ has suggested that

$$
\begin{equation*}
J_{\vec{\kappa}}(t)=N^{-1 / 2} \sum_{j=1}^{N}\left(\vec{\kappa} \cdot \overrightarrow{\mathrm{v}}_{j}\right) \exp \left(i \vec{\kappa} \cdot \overrightarrow{\mathrm{r}}_{j}\right) \tag{1}
\end{equation*}
$$

should have characteristics of a collective coordinate, i.e., it should have a damped oscillatory behavior.

In this communication we shall consider the properties of the function

$$
\begin{equation*}
C(\vec{\kappa}, t)=\left\langle J_{\vec{\kappa}}(0) J_{-\vec{\kappa}}(t)\right\rangle_{T}, \tag{2}
\end{equation*}
$$

which is called the autocorrelation of the coordinate $J_{\hat{\kappa}}(t) ;\langle\cdots\rangle_{T}$ denotes thermal averaging. It will be shown that (i) the spectral function of $C(\vec{\kappa}, t)$, i.e., its Fourier transform, can be obtained directly from inelastic neutron scattering experiments; (ii) this spectral function is peaked at a nonzero value of frequency, i.e., $C(\vec{\kappa}, t)$ has an oscillatory behavior, for all systems; (iii) molecular-dynamics ${ }^{2}$ calculations on liquid argon show that the oscillatory behavior of $C(\vec{\kappa}, t)$ is intimately related to $S(\vec{\kappa})$, the Fourier transform of the pair correlation function.

Consider first the coordinate

$$
Q_{\vec{\kappa}}(t)=N^{-1 / 2} \sum_{j=1}^{N} \exp \left[i \vec{\kappa} \cdot \vec{r}_{j}(t)\right] .
$$

Let its autocorrelation, namely $\left\langle Q_{\vec{\kappa}}(0) Q_{-\vec{\kappa}}(t)\right\rangle_{T}$, be denoted by $F(\vec{\kappa}, t)$. Then the Fourier transform of $F(\vec{\kappa}, t)$ is the scattering law $S(\vec{\kappa}, \omega)$ which, in the first Born approximation, gives the probability of scattering a plane wave off the system with a momentum change $\hbar \vec{\kappa}$ and energy change $\hbar \omega$. It follows, therefore, that

$$
\begin{equation*}
-\ddot{F}(\vec{\kappa}, t)=\int_{-\infty}^{+\infty} \exp (i \omega t) \omega^{2} S(\vec{\kappa}, \omega) d \omega . \tag{3}
\end{equation*}
$$

Using $\dot{Q}_{ \pm \vec{K}}(t)= \pm i J_{ \pm \vec{K}}(t)$ and the fact that in equilibrium all thermal averages are independent of the origin of time, we get

$$
\begin{aligned}
\dot{F}(\vec{\kappa}, t) & =-i\left\langle Q_{\vec{\kappa}}(0) J_{-\vec{\kappa}}(t)\right\rangle \\
& =-i\left\langle Q_{\vec{\kappa}}(-t) J_{-\vec{\kappa}}(0)\right\rangle T .
\end{aligned}
$$

Hence

$$
\begin{align*}
\ddot{F}(\vec{\kappa}, t) & =(-i)^{2}\left\langle J_{\vec{\kappa}}(-t) J_{-\vec{\kappa}}(0)\right\rangle_{T} T \\
& =-\left\langle J_{\vec{\kappa}}(0) J_{-\vec{\kappa}}(t)\right\rangle_{T} \\
& =-C(\vec{\kappa}, t) . \tag{4}
\end{align*}
$$

or, inversely, since $\dot{F}(\vec{\kappa}, 0)=0$, we have

$$
\begin{equation*}
F(\vec{\kappa}, t)=F(\stackrel{\rightharpoonup}{\kappa}, 0)-\int_{0}^{t}(t-u) C(\vec{\kappa}, u) d u . \tag{5}
\end{equation*}
$$

From (3) and (4) we see that $\omega^{2} S(\vec{\kappa}, \omega)$ is the spectral function of $C(\vec{\kappa}, t)$, i.e.,

$$
\begin{equation*}
C(\vec{\kappa}, t)=\int_{-\infty}^{+\infty} \exp (i \omega t) \omega^{2} S(\vec{\kappa}, \omega) d \omega . \tag{6}
\end{equation*}
$$

Thus, using inelastic neutron scattering data we can get $\omega^{2} S(\vec{\kappa}, \omega)$; then, for given value of \vec{k}, its Fourier transform will show the oscillatory behavior of $C(\vec{\kappa}, t)$. Note that $C(\vec{\kappa}, o)$ $=\kappa^{2} k_{\mathrm{B}} T / M$ and $\int_{-\infty}^{+\infty} C(\vec{\kappa}, t) d t=0$.
It is important to realize that $\omega^{2} S(\vec{\kappa}, \omega)$ will show a maximum in its dependence on ω at a certain $\omega(\vec{\kappa})$ for all systems, including an ideal gas. In this sense $C(\vec{\kappa}, t)$ is oscillatory for all systems; however, the manner in which the oscillatory character depends on $\vec{\kappa}$ is what makes $C(\vec{\kappa}, t)$, and hence $\omega^{2} S(\vec{\kappa}, \omega)$, a very useful function to consider. The results for an ideal gas are instructive. In the classical limit, for an ideal gas, $S(\kappa, \omega)=\left(M / 2 \pi k_{\mathrm{B}} T \kappa\right)^{1 / 2}$ $\times \exp \left(-M \omega^{2} / 2 \kappa^{2} k_{\mathrm{B}} T\right)$, and hence $\omega^{2} S(\kappa, \omega)$ has a maximum in ω at

$$
\begin{equation*}
\omega(\kappa)=\kappa\left(2 k_{\mathrm{B}} T / M\right)^{1 / 2} . \tag{7}
\end{equation*}
$$

Since for large enough κ (short-wavelength limit), $S(\stackrel{\rightharpoonup}{\kappa}, \omega)$ tends to the ideal gas form for all systems, it follows that Eq. (7) gives the largeκ behavior of $\omega(\vec{\kappa})$ for all systems.

In the case of substances for which the incoherent neutron scattering cross section is not negligible (argon, sodium, etc.), the observed $\omega^{2} S(\vec{\kappa}, \omega)$ will be the transform of an appropriately weighted sum of $C(\vec{\kappa}, t)$ and $C_{S}(\vec{\kappa}, t)$, where $C_{S}(\vec{\kappa}, t)$ is the autocorrelation of $(\vec{\kappa} \cdot \overrightarrow{\mathrm{v}}) \exp (i \vec{\kappa} \cdot \overrightarrow{\mathrm{r}})$, $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{v}}$ being the position and velocity of any one particle. Hence, under favorable circumstances, we may even observe two peaks in $\omega^{2} S(\vec{\kappa}, \omega)$, one arising out of the transform of the "self" part $C_{S}(\vec{\kappa}, t)$ and the other from the

FIG. 1. $\omega^{2} S(\kappa, \omega)$ for liquid argon, obtained from molecular dynamics data; arrow indicates $\omega_{\max }(\kappa)$, the position of the maximum.
collective part $C(\vec{\kappa}, t)$.
Molecular dynamics ${ }^{2}$ gives us the positions and velocities of the particles as a function of time for a system of a few hundred particles; this is just the information required to calculate correlations like $F(\vec{\kappa}, t)$ and $C(\vec{\kappa}, t)$. A calculation on liquid argon, at a density of 1.407 g / cc and temperature $76^{\circ} \mathrm{K}$, has been made and the data analyzed to obtain $F(\kappa, t)$; no oscillatory behavior is found in $F(\kappa, t)$. On the other hand, $\omega^{2} S(\kappa, \omega)$, shown in Fig. 1 as a function of ω for a few values of κ, has a well-defined peak at some $\omega(\kappa)$. In Fig. 2 we have plotted $\omega(\kappa)$ for all the κ for which the calculation was made; also shown in Fig. 2 is the structure factor $S(\kappa)[\equiv F(\kappa, t=0)]$ which is the Fourier transform of the pair correlation function $g(r)$. In another paper we shall present the results in greater detail.

In conclusion we note that a treatment of a collective coordinate, like, e.g., $J_{\vec{\kappa}}(t)$ of Eq. (1), as a dynamical variable always involves the linearization of the equation of motion; the approximations involved in the linearization are usually hard to assess or to justify. On the other hand, a correlation like $C(\vec{\kappa}, t)$ of Eq. (2) is seen to have a peaked spectral function without recourse to any approximation;

FIG. 2. The structure factor $S(\kappa)$ and $\omega_{\max }{ }^{(\kappa)}$ shown as a function of κ. The straight line has the slope $\left(2 k_{\mathrm{B}} T / M\right)^{1 / 2}$.
the fact that this function, namely $\omega^{2} S(\vec{\kappa}, \omega)$, is a directly observable quantity adds further interest to a theoretical analysis of $C(\vec{\kappa}, t)$.
It is fruitless to discuss whether the behavior of $C(\stackrel{\rightharpoonup}{\kappa}, t)$ discussed above proves the existence of "phonons" in liquids. Whether or not the position-density fluctuations in a system have an oscillatory behavior, we have shown that the momentum-density fluctuations always have an oscillatory behavior and hence have a spectral function peaked at a nonzero frequency. We recall that in the theory of liquid helium, too, it is the momentum density which is a well-defined oscillatory collective coordinate.
I am indebted to J. E. Robinson and Shulamit Eckstein for their keen interest in the preparation of this paper.

[^0]
[^0]: *Based on work performed under the auspices of the U. S. Atomic Energy Commission.
 ${ }^{1}$ R. Zwanzig, Phys. Rev. 156, 190 (1967).
 ${ }^{2}$ A. Rahman, Phys. Rev. $\overline{136}$, A405 (1964).

