COLLECTIVE COORDINATES IN CLASSICAL SYSTEMS*

A. Rahman Argonne National Laboratory, Argonne, Illinois (Received 13 June 1967)

Let $\vec{r}_j, \vec{v}_j, j=1, \dots, N$, denote the positions and velocities, respectively, of a classical system of N particles, each of mass M; Zwanzig¹ has suggested that

$$J_{\vec{k}}(t) = N^{-1/2} \sum_{j=1}^{N} (\vec{k} \cdot \vec{v}_j) \exp(i\vec{k} \cdot \vec{r}_j)$$
(1)

should have characteristics of a collective coordinate, i.e., it should have a damped oscillatory behavior.

In this communication we shall consider the properties of the function

$$C(\vec{\kappa},t) = \langle J_{\vec{\kappa}}(0)J_{-\vec{\kappa}}(t) \rangle_{T}, \qquad (2)$$

which is called the autocorrelation of the coordinate $J_{\vec{k}}(t)$; $\langle \cdots \rangle_T$ denotes thermal averaging. It will be shown that (i) the spectral function of $C(\vec{k},t)$, i.e., its Fourier transform, can be obtained directly from inelastic neutron scattering experiments; (ii) this spectral function is peaked at a nonzero value of frequency, i.e., $C(\vec{k},t)$ has an oscillatory behavior, for all systems; (iii) molecular-dynamics² calculations on liquid argon show that the oscillatory behavior of $C(\vec{k},t)$ is intimately related to $S(\vec{k})$, the Fourier transform of the pair correlation function.

Consider first the coordinate

$$Q_{\vec{k}}(t) = N^{-1/2} \sum_{j=1}^{N} \exp[i\vec{k} \cdot \vec{\mathbf{r}}_{j}(t)].$$

Let its autocorrelation, namely $\langle Q_{\vec{k}}(0)Q_{-\vec{k}}(t)\rangle_T$, be denoted by $F(\vec{k},t)$. Then the Fourier transform of $F(\vec{k},t)$ is the scattering law $S(\vec{k},\omega)$ which, in the first Born approximation, gives the probability of scattering a plane wave off the system with a momentum change $\hbar \vec{k}$ and energy change $\hbar \omega$. It follows, therefore, that

$$-\ddot{F}(\vec{k},t) = \int_{-\infty}^{+\infty} \exp(i\omega t)\omega^2 S(\vec{k},\omega)d\omega.$$
(3)

Using $\dot{Q}_{\pm \vec{k}}(t) = \pm i J_{\pm \vec{k}}(t)$ and the fact that in equilibrium all thermal averages are independent of the origin of time, we get

$$\begin{split} \dot{F}(\vec{\kappa},t) &= -i \langle Q_{\vec{\kappa}}(0) J_{-\vec{\kappa}}(t) \rangle_{T} \\ &= -i \langle Q_{\vec{\kappa}}(-t) J_{-\vec{\kappa}}(0) \rangle_{T}. \end{split}$$

Hence

$$\begin{split} \ddot{F}(\vec{\kappa},t) &= (-i)^2 \langle J_{\vec{\kappa}}(-t) J_{-\vec{\kappa}}(0) \rangle_T \\ &= - \langle J_{\vec{\kappa}}(0) J_{-\vec{\kappa}}(t) \rangle_T \\ &= -C(\vec{\kappa},t). \end{split}$$
(4)

or, inversely, since $\dot{F}(\vec{k},0)=0$, we have

$$F(\vec{\kappa},t) = F(\vec{\kappa},0) - \int_0^t (t-u)C(\vec{\kappa},u)du.$$
(5)

From (3) and (4) we see that $\omega^2 S(\vec{k}, \omega)$ is the spectral function of $C(\vec{k}, t)$, i.e.,

$$C(\vec{\kappa},t) = \int_{-\infty}^{+\infty} \exp(i\omega t)\omega^2 S(\vec{\kappa},\omega)d\omega.$$
 (6)

Thus, using inelastic neutron scattering data we can get $\omega^2 S(\vec{k}, \omega)$; then, for given value of \vec{k} , its Fourier transform will show the oscillatory behavior of $C(\vec{k}, t)$. Note that $C(\vec{k}, o) = \kappa^2 k_{\rm B} T/M$ and $\int_{-\infty}^{+\infty} C(\vec{k}, t) dt = 0$.

It is important to realize that $\omega^2 S(\vec{k}, \omega)$ will show a maximum in its dependence on ω at a certain $\omega(\vec{k})$ for all systems, including an ideal gas. In this sense $C(\vec{k},t)$ is oscillatory for all systems; however, the manner in which the oscillatory character depends on \vec{k} is what makes $C(\vec{k},t)_{\circ}$ and hence $\omega^2 S(\vec{k},\omega)$, a very useful function to consider. The results for an ideal gas are instructive. In the classical limit, for an ideal gas, $S(\kappa,\omega) = (M/2\pi k_{\rm B}T\kappa)^{1/2}$ $\times \exp(-M\omega^2/2\kappa^2 k_{\rm B}T)$, and hence $\omega^2 S(\kappa,\omega)$ has a maximum in ω at

$$\omega(\kappa) = \kappa (2k_{\rm B}T/M)^{1/2}.$$
 (7)

Since for large enough κ (short-wavelength limit), $S(\bar{k}, \omega)$ tends to the ideal gas form for all systems, it follows that Eq. (7) gives the large- κ behavior of $\omega(\bar{k})$ for all systems.

In the case of substances for which the incoherent neutron scattering cross section is not negligible (argon, sodium, etc.), the observed $\omega^2 S(\vec{k}, \omega)$ will be the transform of an appropriately weighted sum of $C(\vec{k}, t)$ and $C_S(\vec{k}, t)$, where $C_S(\vec{k}, t)$ is the autocorrelation of $(\vec{k} \cdot \vec{v}) \exp(i\vec{k} \cdot \vec{r})$, \vec{r} and \vec{v} being the position and velocity of any one particle. Hence, under favorable circumstances, we may even observe two peaks in $\omega^2 S(\vec{k}, \omega)$, one arising out of the transform of the "self" part $C_S(\vec{k}, t)$ and the other from the

FIG. 1. $\omega^2 S(\kappa, \omega)$ for liquid argon, obtained from molecular dynamics data; arrow indicates $\omega_{\max}(\kappa)$, the position of the maximum.

collective part $C(\vec{k}, t)$.

Molecular dynamics² gives us the positions and velocities of the particles as a function of time for a system of a few hundred particles; this is just the information required to calculate correlations like $F(\vec{k},t)$ and $C(\vec{k},t)$. A calculation on liquid argon, at a density of 1.407 g/cc and temperature 76°K, has been made and the data analyzed to obtain $F(\kappa, t)$; no oscillatory behavior is found in $F(\kappa, t)$. On the other hand, $\omega^2 S(\kappa, \omega)$, shown in Fig. 1 as a function of ω for a few values of κ , has a well-defined peak at some $\omega(\kappa)$. In Fig. 2 we have plotted $\omega(\kappa)$ for all the κ for which the calculation was made; also shown in Fig. 2 is the structure factor $S(\kappa) = F(\kappa, t=0)$ which is the Fourier transform of the pair correlation function g(r). In another paper we shall present the results in greater detail.

In conclusion we note that a treatment of a collective coordinate, like, e.g., $J_{\vec{k}}(t)$ of Eq. (1), as a dynamical variable always involves the linearization of the equation of motion; the approximations involved in the linearization are usually hard to assess or to justify. On the other hand, a correlation like $C(\vec{k},t)$ of Eq. (2) is seen to have a peaked spectral function without recourse to any approximation;

FIG. 2. The structure factor $S(\kappa)$ and $\omega_{\max}(\kappa)$ shown as a function of κ . The straight line has the slope $(2k_{\rm B}T/M)^{1/2}$.

the fact that this function, namely $\omega^2 S(\vec{k}, \omega)$, is a directly observable quantity adds further interest to a theoretical analysis of $C(\vec{k}, t)$.

It is fruitless to discuss whether the behavior of $C(\bar{k},t)$ discussed above proves the existence of "phonons" in liquids. Whether or not the position-density fluctuations in a system have an oscillatory behavior, we have shown that the momentum-density fluctuations always have an oscillatory behavior and hence have a spectral function peaked at a nonzero frequency. We recall that in the theory of liquid helium, too, it is the momentum density which is a well-defined oscillatory collective coordinate.

I am indebted to J. E. Robinson and Shulamit Eckstein for their keen interest in the preparation of this paper.

^{*}Based on work performed under the auspices of the U. S. Atomic Energy Commission.

¹R. Zwanzig, Phys. Rev. <u>156</u>, 190 (1967).

²A. Rahman, Phys. Rev. 136, A405 (1964).