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Ambiguities arising in some applications of current algebra are overcome by employ-
ing the algebra of currents to calculate the subtraction constant in a once-subtracted dis-
persion relation. The new approach is applied to E 2& decay and yields corrections to
the usual current-algebra method of about 10%. The branching ratio (K x++no)/(K&

m++m ) is also computed and agrees well with experiment.

It has been demonstrated by several authors'
that the &I= 2 rule governing nonleptonic decays
of kaons follows naturally from the algebra
of currents, even though the original "current-
current" Hamiltonian may contain an intrinsic
AI=2 part. However, one should note that the
application of the soft-pion technique to K- 2~

decay implies setting mK=m~ because of en-
ergy-momentum conservation. Hence, the M
= & rule for K-2m decay is only valid in the
approximation of neglecting the K-m mass dif-
ference. Thus one may inquire whether a large
~=2 contribution will result if terms of or-
der [m(K)-m(m)] are not neglected. On the oth-
er hand, we should like the admixture of &I
= 2 to be sufficient to explain the mode K+
-m++n'. In this connection, we recall that
Nambu and Hara, ' using the soft-pion method,
derived the relation

M(K+-w++~') m'(~ )-m'(~')
M (K,'- w++ m-) 2m'(K) 370'

which is too small (the experimental value is
p = 1/22). The theoretical prediction would
be much improved if one could justify the re-
placement of m(K) by m(m) in Eq. (1).

In this note, we take a closer look at the class
of decays wherein taking the soft-pion limit
imposes an unreasonable constraint on the four-

momentum of the decaying particle. To this
end, we propose a new way of utilizing the al-
gebra of currents in combination with a once-
subtracted dispersion relation. In this new
approach we do not take the limit k-0 (k is
the pion four-momentum) but instead let k'-0
(k —0 implies k'-0 but not the converse). With
this modification of the soft-pion technique,
one is able to evaluate the corrections to the
K,'- 2m calculation of Suzuki and Sugawara'
and, moreover, one finds that Eq. (1) is re-
placed by

M (K+- m++ m )',
,

m'(m+ )-m'(po) 1
M (K~o m.++ m-) 2m2(w) 30

We proceed to explain the method; let us
set

M(K(P)-w (k)+m (k'))

(Sp k k ~)~12 (yp(

Note that due to energy-momentum conserva-
tionP =k+k'; T~p is a function of the variables
p', km, and k". Hereafter, we always take the
mass value p' =m'(K), and hence we shall no
longer mention the possible dependence on P'.
Our procedure depends upon taking the succes-
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sive limits k 0 and k' -0 separately.
Next, note that

T (k, k' ) =i(4k p V )', Jd xe (w (k)!8(x )[8 a (x),H (0)]IK(p)),2,2 . 2 2 k" +m'(w) 4 —ik'x (p)
n 0 p. p,

' I) (4)

where we have used the condition of partially conserved axial-vector current,

i& a (x)=m 'fw (x).
p

In order to evaluate Eq. (4), we make the following crucial observation. If we give up energy-mo-
mentum conservation temporarily, the right-hand side of Eq. (4) defines a new function I"n p(v, t, &,
k', k"), where v, t, and & denote

v=k' ~ ~(p+k), t=k' (p-k), A=(p-k)~.

For the actual decay problem where energy and momentum are conserved, these variables take the
values v= —2[k'+m'(K)], t =6=k", so that

{6)

(k' k")=F (v=--,'[k'+m'(K)] t=k" ~=k" k' k")
p

2

For the sake of definiteness, we first calculate Eq. (4) for the case k'2=0, k'=-m'(w). We may here-
after drop the dependence of Enp on k' and k". (Note that Fnp represents the amplitude for the re-
action 8+K- wn + a p, where S is a fictitious spurion; here v and 6 may be interpreted to be the en-

ergy variable and the square of the momentum transfer of the spurion. The "mass" of the spurion
is also a variable and, in fact, t may be expressed as a linear combination of & and the spurion mass. )

We now assume that Fnp satisfies a once-subtracted dispersion relation in the energy variable
v with the other variables fixed at t =0, ~ =0. Thus we have

v ~ 1 1
E (v, t = 0, 4 = 0) =F (v = 0, t = 0, b = 0) +- dv' —

, . —
, ImF (v' t = 0 & = 0).

np ' ' np ' ' n„~ v'-v ie v' np

The important point to observe is that the subtraction term Fn p(v =0, t = 0, 6 =0) can be computed

from Eq. (4) by formally setting k'=0 since k' =0 implies v=t =k" =0. Integrating by parts with re-
spect to x, one finds

(8)

F (v = 0, t = 0, b, = 0) = — 0 (n(k) I [V',H (0)]IK(p)),(4k,p V')"'
n ' ' f n p' zu

(9)

where the right-hand side of Eq. (9) must be
evaluated at the point & = (P —k)' =0. In the der-
ivation of Eq. (9), we assumed~ the usual equal-
time commutation relation so that Vp stands
for the generator of the SU(2) group.

One immediately recognizes that the first
term on the right-hand side of Eq. (8) is exact-
ly what one expects from the usual application
of the algebra of currents, ' while the remain-
ing dispersion integral represents the correc-
tion proportional to v = 2[m'(m)-m'{K)]. One
can estimate this correction term by comput-
ing the contributions from the K* and p inter-
mediate states in the dispersion integral. ' For

this purpose, one needs to know the matrix
elements

(g (k) IH (0) IK*(q)), (p(q) IH (0) IK(P)). (10)

It is evident that the M= 2 part of H~(0) can
now contribute. However, for the first matrix
element, one may still take the soft-pion lim-
it k'-0. This is done by essentially repeating
the earlier argument with a slight modification
and it turns out that the equal-time commuta-
tor gives zero contribution. Further, the dis-
persion contribution to this matrix element
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may be estimated by saturating it by the K pole.
One finds in this way that the E*-pole contri-
bution to the second term on the right-hand
side of Eq. (8) yields a purely bI = 2 correction
of the order of [m'(K)-m'(w)]/2m'(K*) = 10%
compared with the first term Fop(v=0, t =0,
b, =0). Unfortunately, we cannot use the same
method for (p(q) LV~(0) IK(P)) unless we let m (K)
-0. Thus, in principle, for this matrix ele-
ment, the ~I= 2 part may be non-negligible.
However, the p meson pole does not give any
contribution if we symmetrize our matrix el-
ement with respect to the two final pions and
if we neglect the m+-m mass difference. Hence,
we do not expect the contribution of the disper-
sion integral to &I = 2 to exceed its contribution
to bI = 2. Thus, with a maximum 20% error,
we may neglect the dispersion contribution in

Eq. (8) and write

lim T (k', k")=F (v =0, t =0, & =0). (11)
k'2-0

Note that wherea. s Eq. (11) is exact in the usu-
al limit k'-0, we have shown that it is also
approximately correct in the weaker limit k'2 —0.

We go one step further and take the limit k'
-0 of T~p(k', k"). One can again use the tech-
nique outlined above to evaluate F~p(v =O, t =0,
&=0) given by Eq. (9). First, observe that

F~p(v=0, ( =0, b) is a function of s—= k P = 2[k'

+P —b.] and assume a once-subtracted disper-
sion relation with respect to s. Again, the sub-
tracted term at s =0 can be computed by means
of the algebra of currents, while the dispersion

integral is now expected to be small since the
K*, p, K, and m intermediate states can eas-
ily be shown to give zero contribution. Hence,
one can set

F (v=0, (=0,&=0)
np

=-f '(2PO)"'&OI [&,[&,II (0)]]IK(P)&, (12)

which gives a purely M= 2 transition. Hence,
any intrinsic ~I= 2 part in the weak Hamilto-
nian can contribute to K- 2m only through the
dispersion integral in Eq. (8), which we have
seen is small compared with the subtraction
constant or the equal-time commutator term
in Eq. (8). Since, from Eq. (12), the latter
term leads to a dominantly ~I = & contribution
to K- 2~ decay, we conclude that the ~= 2 part
of the weak Hamiltonian is indeed suppressed.
Clearly, however, in problems where one may
be looking at only &I=2 or higher effects, as
for instance in K+- m++m decay, the disper-
sion integral in Eq. (8) would acquire impor-
tance and affords, in principle, a way of per-
forming the calculation.

For K -w++m decay, we may alternatively
assume' the possibility that there is no intrin-
sic ~I = 2 part in the weak Hamiltonian and that
the decay arises chiefly from the small mass
difference between ~+ and m . Then, as an ap-
proximation, we shall neglect all dispersion
integral corrections. Actually, we find that
the final answer is not seriously affected by
their inclusion. Using Eq. (12) for the final
matrix element, we find

M(K+- + w+)w:M(K+- w + w): M( K-,ow++w):M(K~ -o+ w+ )w:M(K,owo+wo) =-1:1:1:1:1,(13)

where the symbol M(K- w~+wP) implies that
we have set kp'-0. If the physical M(K- w~

+ wP) is expanded as a linear combination of
k~' and kp', the result is

R= M (K+ —w++ w') m'(w')-m'(w+)
M(K '- w++ w-) 2m'(w)

which is Eq. (2). The argument leading to this
result is very similar to that of Ref. 2, but
we end up with m'(w) instead of m'(K) in the
denominator. ' It is interesting to observe that
several models recently considered lead to
the same conclusion. ' We would like to empha-
size that in the usual treatment of Hara and
Nambu, Eq. (13) is derived under the more

restrictive limit when the four-momentum of
the relevant pion itself vanishes. This is the
basic difference in our result which leads to
the substantial change in the result for the ra-
tio R.

We finally remark that if F~p(v, t, &) satis-
fies an unsubtracted dispersion relation and

if the dominant contribution comes from the
K* and p intermediate states, then the results
of the algebra of currents are essentially equiv-
alent to those obtained with the vector-domi-
nance model (as has been conjectured by Sak-
urai). ' This is connected also with the va, lid-
ity of a sum rule analogous to that of Fubini-
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Dashen —Gell-Mann. '0 Indeed, if F~ p(v, t, A)
satisfies an unsubtracted dispersion relation,
then

lim F (v, t, A) =0

or, equivalently, we have

F (v=0, t =0, &)
Q

dv' , ImF—(v',t = 0, b, ) (14)ms-~ v' np

because of Eq. (8). It is easy to see that Eq.
(14) is the analog of the Fubini-Dashen —Gell-
Mann sum rule if we recall Eq. (9). It follows
that if F~p(v, t, b) satisfies a once-subtracted
dispersion relation [cf. Eq. (8)], the dispersion
integral will provide a measure of the devia-
tion from the vector dominance model.

Applications of these techniques to other par-
ticle decays are in progress and will be report-
ed elsewhere.

We would like to thank Dr. T. Das for useful
discussions.
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