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Dilute solutions of He' in He4 at low temper-
atures have commanded recent interest because
of the Fermi liquid properties and the possi-
ble superfluid transition associated with the
solute. In particular, we refer to theoretical
investigations by Bardeen, Baym, and Pines'
(BBP), and by Emery. ' The problem appears
particularly suitable for an application of the
method of correlated basis functions (CBF).
We shall present here an outline of such a mi-
croscopic calculation, as well as some prelim-
inary results.

The system under consideration consists of
n4 He4 atoms and n~ He' atoms in a unit volume,
n, +n4 =n, x =n, /n «1, interacting pairwise via
the usual Lennard-Jones 6-12 potential v(r),
with its strength and range determined by the
de Boer-Michels parameters. The Hamilton-
ian is given by

II, describes the additional zero-point motion
due to the replacement of n, He atoms by He'
atoms. It includes only n, one-particle oper-
ators, and may be regarded as a small correc-
tion to H, . The bulk properties of the solution
are dominated by Hp, which is immediately
recognized as the Hamiltonian for a system
of pg He4 atoms. The wave functions we seek
must however be appropriate for n, fermions
and n4 bosons. A natural choice of the basis
consists of the eigenstates of Hp with this rath-
er peculiar symmetry. These eigenstates can-
not be readily determined. One might, as a
first approximation, neglect the symmetry
requirement and employ a completely symmet-
ric basis. This means using a good liquid-He
ground-state wave function g,+(1,2, ~ ~ ~, n) to
evaluate the unperturbed energy

"s
H = g V'. '+ g V.'+ g v(r .). (.1)
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On account of the strong repulsion in v(r), short-
range correlations are important. In the CBF,
one begins by constructing properly symme-
trized wave functions which contain correlation
factors that vanish at short range. A complete
set of such correlated functions can then be
used as a basis for computing matrix elements
of H and 1. Properties of the ground state and
low excited states may then be calculated by
approximately diagonalizing these matrices.
The CBF corresponding to these states must
be physically motivated.

Following Baym, we first separate H into
two parts,

H=H +Hq,

(3)

The first-order perturbation correction is then
given by g, , H, g, )/(g, +, g,H). We have how-
ever chosen to carry out a more elaborate cal-
culation with a properly symmetrized set of
basis functions. The separation of the Ham-
iltonian in Eg. (2) is used merely to furnish
physical motivations in the construction of these
functions and mathematical convenience in the
subsequent computation of matrix elements.
If a perturbation theory is used next, H will
be separated in a different manner, the unper-
turbed part X, containing only diagonal matrix
elements and the perturbation AX only nondi-
agonal matrix elements Hp and II, both con-
tribute to X, and to 63C.

For the ground state, Hp suggests a trial
wave function of the form

Pl $2
H = V2+ v r

i=1 4 i&j=1 (1, 2, , n) 4 o(1, 2, ~ ~ ~, n ~),
B

(4)
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(2) where $0+ is as defined earlier, for ALL n
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atoms, and C, is a Slater determinant

of n, single-Particle orbitals yk o (i), here
taken as plane waves multiplied by spin func-
tions. 40, as required, is antisymmetric with
respect to the interchange of two atoms labeled
1 through n„and symmetric with respect to
the interchange of two atoms labeled n, +1 through

The presence of g,+ implies that 4, accounts
properly for the short-range correlations for
each pair of atoms.

For the excited states, we note that there
should be two branches of excitation: The pho-
non (-roton) spectrum of pure He' will be some-
what modified by the presence of the impuri-
ties, and the free Fermi gas excitations of
He' will be modified by the He'-He3 interactions
as well as interactions of He' atoms with the
He~ background. A suitable basis will there-
fore contain functions describing (a) states with
no phonons and a distribution of fermions ex-
cited out of the Fermi Sea, (b) states with one
or more phonons and a filled Fermi Sea, and

(c) states with both phonons and excited fermi-
ons. Free phonon states for pure He~ may be

scribeds by

my, m2, .~, mv
(1, 2, ~ ~ ~, n)

ky, k2, ~ ~ ~, kv

the liquid structure function at density n. m&
is the number of phonons with momentum k&
present. The free Fermi gas states are sim-
ply Slater determinants

(1, 2, ~ ~ ~, n )kl vl, k202, ~ ~ ~, k„o' ' ' ' 3
3 "3

like C„with specified momentum and spin
quantum numbers. Our correlated basis is
constructed from the products of these two
types of mell-defined functions, and has the
required symmetry property. This basis is
admittedly not orthogonal, but our previous
experiences with the application of CBF to pure
He systems~~' lead us to beleive that the orthog-
onalization is by far easier for dilute solutions.
On the other hand, the evaluation, . second quan-
tization, and diagonalization of the B matrix
are much more difficult. %e are currently
engaged in these calculations; details will be
presented in future reports. In this paper we
shall report on results of a first-order pertur-
bation calculation, which is, of course, also
variational. Several properties of the solution
have been numerically deduced from this cal-
culation. They are in good quantitative agree-
ment with experiments, and with results of
phenomenological or model calculations.

To first order, the ground-state energy Eo
of the system is given by

where

V-
= II

,
[ns(k.)]"

n
p-= P exp(ik. r.)k zz=l

(Ii,& is evaluated using a modified version of
the Wu-Feenberg cluster development. ' It re-
sults in the following series'.

(8,) =E, +xE„(x)+x E (x)+x E„(x)+~ ~ ~, (6)
8 2 3

with Eo given in EcI. (3) and

is the density-fluctuation operator and S(k) is
E (x) =24ne ~4'J [S(2k r)-l)[1- r2+ ]rr dr,

0

E (x) =-~ —
~

ne ~@ fff r 'S(k r )[S(k r )-l][S(k r )-1]dr dr dr,
unit sphere

k = 3n'nx,

'+=k'k '/2mF F
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The expansion is in powers of the He~ concen-
tration and in the deviation of the liquid struc-
ture function from unity. It is expected to con-
verge rapidly. Through integrations by parts

and rearranging terms, (H,) may be obtained:

(H )=(H ) +-.'[xE (x)

+x'E ( )+x'E ( )+ ], (6)

the integration over Ti includes a summation
over the spin index for i ~ns. The other term
in (H,) combines with like terms in (H,), re-
sulting in a numerical factor 4 which has the
same effect as redefining Eot(x) in terms of
eF'"=-5'kF'/2m3, as expected from the fact
that all statistical corrections are due to mass-
3 atoms. (HI) Z is evaluated using a modified
version of the van Kampen cluster development. '
The leading term turns out to be 3xTp, where
Tp is the ground-state kinetic energy for pure
He4 at density n. This term is, like Ep+ in
Eq. (6), augmented by a series representing
additional statistical corrections which we shall
not deal with in detail, for reasons to become
clear immediately below.

The numerical evaluation of these expressions
is carried out using for g,+ the wave function
calculated by Massey for a Lennard-Jones
6-12 potential with de Boer-Michels parame-
ters, ' for a range of densities g and concentra-
tions x. The adequacy of pa+ as a solution to
the Schrodinger equation for the pure He4 sys-
tem is discussed in detail in Refs. 4 and 8.
Table I gives (Ha) at x = 6 /0. The statistical
corrections are indeed rapidly converging,
small, and sloly varying. Also given in Ta-
ble I is the leading term of (Hl)Z, 'xTO, at-
x=6%. It is smaller than Eaj3 by a factor of
20. Statistical corrections to this term will
be down by at least another two orders of mag-
nitude and can be safely disregarded. The small-

V, = n'm s'/n-a (lO)

s being the velocity of sound in pure He4 at
density n4'. n is given by

m4s Bnq (3 n4

This is an approximate result for an opposite-
spin pair or near-zero concentration of He'.
In terms of n the density of the solution n(P)
at pressure P is given by

n, '(S) =n(Z) [I + ~(Z)x],

ness of the effects of symmetry on bulk prop-
erties of the solution is easy to understand and
was recognized by previous authors. Our cal-
culation here merely substantiates this conclu-
sion with quantitative evidence.

A measure of the effective interactions be-
tween two He' atoms in the solution can be ob-
tained from the results of Table I. It claims
unique importance in the determination of the
Fermi-liquid properties and the transition tem-
perature. According to BBP, a velocity- and
spin-independent effective potential V~ has a
long-wavelength limit proportional to n', where
n is the fractional increase in the volume of
the system resulting from the replacement
of a He4 atom by a He' atom'.

Table I. (HD) and (Hi) at x= 6'.
n

(A-&)
xE 0g(x)/n

(K)
xmZ02(x)/n

(K)
x'Z os(x)/n

('K)
(H,) /n

(K)

0.0218
0.0226
0.0234
0.0242
0.0250
0.0258

-5.853
-5.969
-6.027
-6.035
-5.990
-5.715

0.0249
0.0255
0.0261
0.0267
0.0273
0.0278

—0.0007
-0.0007
—0.0007
-0.0007
-0.0007
-0.0007

-0.00000
-0.00000
-0.00000
-0.00000
-0.00000
-0.00000

5.827
5.943
6.000
6.007
5.962
5.686

0.281
0.299
0.317
0.336
0.355
0.374
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or

( )
n, '(P)-n(P)

(P)
(12)

and

'04

Thermodynamic properties of the solution at
low temperatures may then be approximately
deduced from the knowledge of n as a function
of the pressure. Figure 1 shows n(P) obtained
in our calculation at x = 6 /p, n4 (P) and s(P)
having been deduced from recent experimen-
tal data. ' At P=O, we have @=0.303 as com-
pared with the experimental value'P (at 1.2'K)
n= 0.28. Also, at zero pressure,

n,P&n/en, P = -1.4,

O
~ Q ~

%4 tl4

The latter results involve the second deriva-
tive of T, with respect to n4 . The magnitudes
should not be taken seriously. The sign indi-
cates that for fixed concentration, n decreas-
es with increasing pressure; in other words,
the difference in the specific volumes of He4

and He' slowly diminishes. The result is con-
sistent with considerations based on known
compressibilities of pure helium liquids. Con-
sequently, the effective interaction is seen to
be weakened as pressure increases, lowering
the transition temperature to below the micro-
degree range. One might coMpare these nu-
merical results with those of BBP's hard-sphere-
model calculation; they obtained

S
= 4.30'K

expt 3 4.

at P=0. Our first-order theory gives

B B
(n~+n4) + np + '—' '

8@3 n 3 6 J x=0

n'3n'

and therefore

B= &p /ny

= 4.77'K.1 T.
'

th 3 n

The approximation of the ground-state ener-
gy Eo by E, +3xT, is not valid for proper-
ties of the mixture which are specifically as-
cribed to the solute. In the following we sub-
ject this approximation to a useful test of ac-
curacy, and show that a most encouraging irn-
provement may be anticipated upon the inclu-
sion of higher order perturbation corrections.
Let Ap, be the difference between the chemi-
cal potentials of (a) a single HeP atom in liIl-
uid He~, pP, and (b) a He~ atom in pure He4,

p4P. From the experimental data of Edwards
and the calculations of Ebner, "this number
is known to be

a(p)

0.5—

04

0.2

O. l

n =0.31,

n 'ea/Sn, ' = -1.13,

The discrepancy between ~pexpt and ~pth
is not insignificant. It is however possible
to estimate higher order corrections in the
perturbation treatment. Davison" ha, s performed
a second-order Brillouin-Wigner calculation
for a system of one He' atom in liquid He4,

using matrix elements describing the absorp-
tion or emission of a phonon by the He~ atom,
and an approximate wave function for gp+ cal-
culated earlier by Massey with a different Len-
nard-Jones potential. 4 He obtained an effec-
tive mass for the He' atom as well as a con-
stant shift 8, on the ground-state energy:

0
0

I

10

P, ATM

I I

20 25 30

FIG. 1. The BBP parameter o. as a function of pres-
sure.

$,=-0.57 K.

At small concentrations, the He' atoms will
act quite independently, each producing the
same shift S,. Our ground-state energy Eo
of the system is then corrected by the addition
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of a term n, S» resulting in

EB 1TB @B
0 ~ 0 + g 0

th n 3 n 2 n

= 4.77'K-0.57'K = 4.20'K,

in good agreement with a pexpt.
We are grateful to T. Davison for communi-

cating his results to us.
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STUDY OF THE Li ION IN KCl USING THE SPIN-PHONON INTERACTION*
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In a crystal which contains magnetic ions,
the spin-phonon interaction will modify the
normal modes. ' To a crude approximation,
the interaction effectively removes a band of
phonons close to the Larmor frequency of the
spins. The thermal conductivity, then, will
be modified by the absence of these carriers,
and by sweeping the magnetic field it should
be possible to determine their distribution func-
tion. Since this function depends on the pho-
non-scattering processes in the crystal, this
is a potentially useful technique for obtaining
phonon mean free paths. '

In particular, it has been suggested' that it
should be possible to study the phonon scatter-
ing by a nonmagnetic defect by comparing the
thermal conductivity as a function of magnet-
ic field for two crystals: a "pure" crystal con-
taining only the magnetic ions, and another
containing, in addition to the magnetic ions,
the nonmagnetic defects to be studied. In oth-
er words, the magnetic ion is used as a probe
to study the nonmagnetic defect.

We wish to report here the first results of
such a study of the Li ion in KC1. This defect
has been investigated through its effect on the
temperature dependence of the thermal con-
ductivity. 4 Briefly, it has been deduced that
there is a strong resonant scattering at about
1.2 cm '. However, theory indicates that the
Li ion occupies a position displaced from the

center towards the [111]directions in the unit
cell.' If the potential is isotropic, this should
lead to four equally spaced levels. ' It is not
surprising that the temperature dependence
of the thermal conductivity does not resolve
these since the effective resolution of the "spec-
trometer" is roughly equal to the frequency.
The spin-phonon technique, on the other hand,
promises an improvement in resolution'. The
maximum change in the thermal conductivity
on applying a magnetic field is often no more
that 10 to 30%.' This indicates that the width

of the band of phonons removed from the con-
duction process is on the order 10 to 30 'l/p of
the total. Thus we would expect to have im-
proved the resolution by a factor of between
3 and 10.

The change in thermal conductivity on apply-
ing a magnetic field can be written approximate-
y ass

~ =-AT f(x)m,
where

A =k /2w'Vk

x = k(u, /k T =gPH/k T,

f(x) =[e /(e -1) ]x [gl/7(x)]

7 (X) is a relaxation time determined by phonon-
scattering processes at zero field, v is an aver-
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