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which replaces the usual relation for d~. All
the thermodynamic calculations will go through
as before' with -n replacing V and p replacing
P. No instability occurs if C~ becomes infinite
along a A. line, but instability will occur if Cz
tends to become infinite.

We speculate now that at the end of the X line,
where the phase separation starts to take place,
an infinity in C tends to go over to an infin-
ity in Cz. This seems a fairly reasonable hy-
pothesis. As long as 3He is in low concentra-
tion, the interaction between rotons, which
is responsible for the X transition, would be
expected to depend upon an intrinsic property
of the 4He part, such as its chemical potential.
But as the concentration of 3He increases and
'He itself becomes more intimately concerned
in the transition, the dependence might well
go over into one on concentration.

Some measurements on the specific heat at
constant composition C„have been made on
'He-4He mixtures. 4 In general, Cz reaches
apeak at the X line, but does not appear at be-
come infinite, as, of course, it should not.
It would be much more difficult to obtain mea-
surements of C&, which should become infinite.
Relationships analogous to those with pressure
and volume as the parametric variables should
hold.

The peak of C„along the A. line becomes low-
er as the temperature A, is lowered. This pre-

sumably occurs because the decrease in the
temperature is correlated with a decrease in
the concentration of 4He. The A, transition thus
becomes "diluted. " Also, at a composition
very close to that of the top of the phase-sep-
aration curve, the order-disorder changes in
the phase separation and in the A. transition tend
to overlap in the curve of Cz vs T, which gives
an appearance of rounding off. These phenom-
ena are probably not connected particularly
with the change in the character of the transi-
tion. But it would be very interesting to have
complete thermodynamic data in this region,
in order to be able to test and analyze the ther-
modynamic relationships.

These ideas evolved from a discussion with
Professor W. M. Fairbank. I am also indebt-
ed to Professor J. D. Reppy for giving me a
copy of his article before publication.
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Calculations of a two-stream instability have been made by following the motion of the
phase-space boundaries of an incompressible and constant-density phase-space Quid.

Because of the condensation of holes, which to a good approximation act as gravitational

particles, large-scale nonlinear pulses develop.

This Letter presents a picture of the nonlin-
ear development of a two-stream instability
that has resulted from numerical experiments
with the one-dimensional Vlasov-Poisson equa-
tions. The motion of the electrons is described
by Vlasov's equation

&t Bx' Bx Bv

There is a uniform neutralizing background,

and the potential p is determined from Pois-
son's equation

8 2' 88f—-1
Bx

~here &u~ is the plasma frequency and v ~ is
a constant chosen so that in the mean, ffdv/
vo

We picture the distribution function f(x, v, t)
as the density of an incompressible "phase
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fluid" which moves in (x, v) space. This anal-
ogy is well known, ' 4 but the hydrodynamics,
statistical mechanics, ' and thermodynamics'~'
of such a classical self-interacting fluid have
not yet been examined in detail and are intrin-
sically well worth studying. Numerical com-
putations on fluid motion in phase space are
easier than for a real fluid, and our results
bring out features of the nonlinear development
of an instability that extend those found in pre-
vious numerical calculations. '~' The method
of calculation employed here can be used for
a variety of one-dimensional Vlasov-Poisson
problems, and the results may be relevant
to other situations where similar equations
occur, for example in gravitating systems, "
particle accelerators, electron tubes, micro-
wave devices, and thermonuclear machines.

To study nonlinear phenomena in phase space
in their simplest form, it is natural to assume
that f = 1 in certain regions and f = 0 elsewhere.
This model corresponds to the homogeneous
incompressible fluid of classical hydrodynam-
ics and has been used by several workers. ' '
The state of a one-dimensional system is com-
pletely defined by specifying the boundary
curves between the f = 0 and f = 1 regions. The
equations of motion of each point on a curve
are

GX' AV Bp
4f Bx' (3)

and the potential at each instant is determined
from Poisson's equation, the charge density
being obtained by a geometrical construction.
This type of calculation was employed by Do-
ry' in a study of the negative mass instabili-
ty in circular particle accelerators. The main
computational problem is that the curves con-
tinually stretch, so that their representation
by a fixed number of points becomes inaccu-
rate. Our program therefore uses a list-pro-
cessing technique which enables extra points
to be inserted automatically, wherever they
are needed. The calculation is then quite ac-
curate and fast, although the. practical dura-
tion of a run is still limited.

The example to be discussed is a two-stream
instability, in which the electron plasma is
slightly perturbed at t = 0 from an equilibrium
characterized by four straight lines in phase
space: f=1 tor 2vo& Ivl&vo and f=0 elsewhere.
Periodic boundary conditions are imposed at
x = (0, L) and the parameters of the problem

are vob, t/Ax=0. 25, u&pb, &=1/20, and &x=L/64,
where ~x is the grid used for evaluating Pois-
son's equation. The unstable wave numbers
ar e 0 = 2'�/L with n = (1, 2), and the linear
growth rates are y/&~ = 0.30, 0.315.

The most striking feature of the calculation
is the behavior of the f = 0 "cavity" which ini-
tially occupies the strip (IUI &m, ) between the
two plasma layers. This must preserve con-
stant area as it deforms, and it is seen in Fig.
1 to coalesce into holes of roughly elliptical
shape, so that a large-amplitude electrostat-
ic wave is set up. Superimposed on this wave
are coherent osciQations due to rotation of
the holes in phase space, and also random
fluctuations due to the motion of smaller ele-
ments of the hole "fluid. " The two outer curves
adjust almost adiabatically to the instantane-
ous potential function.

The holes are evidently being attracted to
one another, and so behave like positively
charged bodies with negative mass. One ex-
planation is that the boundary of each hole is
actually determined by the motion of negative-
ly charged electrons, which are attracted to-
wards a neighboring positively charged region
occupied by another hole. Alternatively, we
can construct a formal analogy between any
plasma problem and an equivalent gravitation-
al problem, in which the law of force is attrac-
tive and the f = 0 and f = 1 regions are inter-
changed. %e can then show rather accurate-

FIG. 1. Evolution in phase space of a two-stream in-
stability from time steps 200 to 600 at intervals of 50
steps. Each step is 1/20 of a plasma period, and the
horizontal and vertical coordinates are x, v, respec-
tively. Periodic boundaries have been imposed and
three identical periods are shown along each row. The
shaded area represents the f= 0 region enclosed by the
plasma fluid.
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ly that the holes become globular masses that
attract one another with a shielded Coulomb
force. The boundaries of the two semi-infi-
nite f= 1 regions merely provide the shielding,
since the phase velocity of any wave on these
curves is much higher than the velocity of a
hole. The roughly elliptical cavities in Fig.
1 thus correspond to the gravitational equilib-
ria found by Hohl and Feix, ' who employed
a similar model. A similar duality or "mass
conjugation" has been demonstrated by Dory'
for the negative mass instability in circular
accelerators.

Figure 1 suggests that the system is relax-
ing to a Bernstein-Greene-Kruskal" (BGK)
standing electrostatic wave, whose periodici-
ty is the one that has been externally imposed.
A similar result has been obtained by Arm-
strong'2 for a continuous two-humped distri-
bution. However, since we have imposed pe-
riodic boundary conditions, this final state
is artificial. lf the periodicity is relaxed, the
BGK mode may be unstable, since it follows
from our gravitational analog that two adja-
cent holes should attract if slightly displaced
towards one another.

The important structure that has formed is
the solitary electrostatic pulse which is sup-
ported by a hole in phase space. The BGK
mode is a special alignment of these pulses,
but the significant description of the system
should be in terms of the number of holes,
their distribution (shape, size, position, ve-
locity), and their mutual interaction (polari-
zation, hole-hole collisions). The total elec-
trostatic field may be expressed as the sum
of the quasistatic screened Coulomb fields
due to the individual holes, together with a
high-frequency component due to plasma os-
cillation s.

The simplest example of an electrostatic
pulse is a single hole (f = 0) in an infinite
electron fluid (f=1), and this corresponds
exactly to the gravitational equilibrium found

by Hohl and Feix. ' A more general case is
a hole in a finite electron slab. Each phase-
space boundary is an equal-energy contour
in the frame of reference in which the hole
is at rest, and these pulses may be construct-
ed analytically. A computer program has been
developed for carrying out the necessary quad-
ratures, so that holes may be generated with
any desired area and velocity, and used as
the input data for numerical experiments on

hole-hole interactions. These. experiments
will be reported elsewhere.

There is an interesting correspondence with
atomic theory. An isolated pulse is analogous
to a Thomas-Fermi atom, and the invariant
area of the hole is a classical action variable.
A pulse may be either in its ground state, or
excited by waves on the inner curve. Two puls-
es will interact with one another by hole-hole
collisions, which may be inelastic, or almost
elastic. A pair of holes may capture one an-
other into a bound state, or may fuse together.
The various possibilities are best envisaged
with the help of the gravitational analogy.

Figure 2, which shows some results from
a run with periodicity 4J-, was carried out
to test the stability of the individual holes
and of the BGK mode. The number and sizes
of the initial holes result from interference
between a group of fastest growing modes.
Step 250 shows six holes of substantial size
(to be labeled 1-6, starting from the left),
together with four smaller cavities. The in-

FIG. 2. Time development of a two-stream instabili-
ty. The unperturbed equilibrium parameters and time
steps are the same as Fig. 1, but the periodicity
length has been extended four times and a different
initial perturbation has been used. Only one period is
shown at each time step.
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teraction causes some holes to coalesce as
the result of collisions, while others under-
go tidal distortions but maintain their separate
identities. In all cases small filaments off
= 0 "evaporate" from the main body and ran-
domize throughout the system.

Holes 5 and 6 move together and coalesce
by step 450, either because of their relative
velocity or because of their mutual attraction.
Hole 4 is moving towards 3 and. will obvious-
ly coalesce shortly. The small cavity on the
left of hole 3 has captured extra material,
but is moving towards 3 and will coalesce with
it. The orientation of holes 1 and 2 is remark-
ably stable; it appears that the screened at-
tractive force is too weak to produce any ap-
preciable relative motion during the course
of the run. In addition to the secular motion
of the holes, there is a vertical oscillation
due to an n = 1 plasma wave of period 60 time
steps which is generated by the initial condi-
tions and persists with constant amplitude and

frequency throughout the run.
It is desirable to develop a statistical de™

scription of the system, and this may be on
more than one level. One task is to explain
the "local" coarse-grained distribution f (x,v)
or f (E) within the cavities and in the surround-
ing regions (here E = y+ 2v2 is the total ener-
gy), and to follow its evolution in the presence
of excitations. Another task is to predict the
number, size distribution, and velocity dis-
persion of the holes themselves.

A suitable coarse-grained distribution func-
tion has been introduced by Lynden-Bell, ' who

points out the relevance of the exclusion prin-
ciple; i.e., two elements of fluid cannot occu-
py the same region in phase space. Iff takes
only the values (0, 1), the "most probable" fi-
nal state for the electron fluid is a Fermi dis-
tribution. This result may be extended in an
interesting way to our problem. Using the
gravitational analogy, we can invert the f = 0
and f= 1 regions, so that the Lynden-Hell the-
ory predicts a Fermi distribution for the holes,
which is in qualitative agreement with the re-
sults. The remaining degrees of freedom of
the system are only weakly excited.

Solitary pulses have been found to be a com-
mon occurrence in nonlinear theory. '3 Niel-
son has observed solitary waves evolving from
the negative-mass instability in experiments
on the Cosmotron" and DCX,"and the persis-
tence of electric field fluctuations found in Daw-

son's numerical experiment with the two-stream
instability is consistent with our solitary pulse
picture. In a gravitational example, Maxwell"
explained the stability of Saturn's rings in terms
of the negative effective mass of the orbiting
particles, which causes them to repel one an-
other. Under suitable conditions, holes in a
rotating gravitational system might therefore
be expected to attract.

It will be interesting to determine to what
extent solitary waves can describe the nonlin-
ear phase of other instabilities, and to see
how they fit in with puasilinear theory. "~"
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