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crated through a potential of 3.7 V; the cur-
rent traversing the cavity was 0.13 mA. The
xenon gas pressure was approximately 12 mTorr.
At such low electron-beam currents the cavi-
ty fields are only slightly perturbed by the elec-
trons, even at cyclotron resonance, and after
proper alignment of the microwave spectrom-
eter, the rate of absorption of field energy by
the electrons in the cavity was the quantity
measured. The center horizontal line of the
oscilloscope trace represents zero absorption.
Negative absorption near 6 = 0 is apparent.
Comparison with Fig. 1 shows that the exper-
imental value of the parameter n is approxi-
mately 4. This compares favorably with the
data published by Frost and Phelps' which gives
3.8 as the value of n for 3.7-eV electrons in
xenon.

Upon variation of the electron energy, the
dip was observed only at those energies which
correspond to a large positive slope of the col-
lision cross section of the background gas used.
In helium at energies of a few eV no dip what-
soever was observed. The spectrum correspond-
ed to that labeled a=0 in Fig. 2, a result to
be expected since the collision frequency for
electrons in helium is about constant in that

range.
It is suggested that the method employed in

these experiments may be applied fruitfully
to the development of accurate elastic-collision
cross-section data.
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POSSIBLE RELATION BETWEEN PHASE SEPARATION AND THE A. TRANSITION
IN sHe ~He MIXTURES*
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Along the ~ line in SHe-4He ~&xtures, the specific heat at constant chemical potential
presumably becomes infinite. It is suggested that the A, transition changes over to a first-
order transition at a point at which the specific heat at constant composition becomes in-
finite. Possible reasons for such a change are discussed. The thermodynamic relation-
ships are introduced through analogy with a system in which the variables are pressure
and volume rather than chemical potential and composition.

In any order-disorder phenomenon there is
a pair of complementary thermodynamic vari-
ables which are directly connected with the es-
tablishment or destruction of order, for exam-
ple, the magnetic field and magnetization of
an Ising lattice. Sometimes these variables
are "hidden" and cannot be controlled by the
experimenter, as in the A. transition of liquid
helium. It is also often necessary to consider
other "parametric" variables, which affect the
process indirectly. In the liquid-vapor equilib-

rium, pressure P and (molal) volume V are
primary variables, but in the Ising lattice they
are parametric variables. The energy neces-
sary to turn over a spin, which controls the
transition in the Ising lattice, depends upon
I' or V, or, possibly, upon a parameter Y,
which is itself a function of V and P. If (6Y'/6V)Z
and (6I'/3T)V are everywhere finite and (6F/6V)&
is everywhere nonvanishing, Y may be said
to be a volumelike variable, and C, then, tends
to become infinite along a A, line. On the other
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hand, if (BY/BP)T and {BY/BT)P are finite and

(BY/BP)T nonvanishing, Y is pressurelike and

C~ becomes infinite along a i line.
If Cv tends to become infinite along a A. line

in P™aTor V-T space, it can be shown' that
(BP/BT)V parallels C as the latter becomes

v
infinite, that along the X line dv&/dT& = (BV/BT)P,
and that (BP/BV)T also eventually tends toward
infinity as the X line is approached. However,
it becomes positive, which causes the isotherm
to take the form of a van der Waals loop. Then
the system becomes unstable and the transition
changes over to a first-order one before the
infinite value of C can be reached.

On the other hand, if C~ becomes infinite,
then (BV/BT)P parallels C&', while along the
X line dP&/dT& —(BP/BT)V, and eventually, close
to the X line, (BP/Bv)T tends to vanish, but
is never positive, so that no instability appears.

It is instructive to consider the thermodynam-
ic relation between C~ and C„:

C =C +T(BP/BT) (BV/BT) .
v

C =C T(BV/BT) -'{BP/BV)T

,. =C T(dV /dT -)'(BP/BV) .
A. line v

(2)

With (BP/Bv)7 tending to become positively
infinite, the second term in Eq. (2) would can-
cel the infinity in Cv if this condition could be
reached.

The question now arises, what would happen
to a X line if Y changed from being a pressure-
like parameter to a volumelike parameters
Since (8Y/BV)T -- (BY/BP)T(BP/Bv)T, we see
that if 7 is a pressurelike parameter, then

(BY/BV)T =0 along the X line, because (BP/Bv)T
vanishes and (BY/BP)T is finite. Similarly,
if Y' is volumelike, (BY/BP)T vanishes along
the X line.

If Y changes from a pressurelike to a volume-
like parameter at a, certain point on the A. line,
this means that (BY/BV)T ceases to be zero,

This may be written

C =C +T(BP/BT) '(BV/BP)
v

,. =C +T(dP /dT )'(BV/BP) . (I)

If C~ becomes infinite, (Bv/BP)T becomes in-
finite and remains negative, and the second
term in Eq. (I) cancels the infinity in Cp

If Cv tends to become infinite, we write

and rises in value. At the same time, (BY/BP)T
becomes zero. Presumably at the point of change
they are both zero. While (BY/BV)T is zero,
(BP/BV)T remains zero; when, however, (BY/
BP)T becomes zero, {BP/Bv)T becomes infi-
nite and changes sign, and the A. transition must
change to a first-order one. Though (BP/BV)T
vanishes all along the X. line where F is pres-
surelike, we expect the region in which (BP/BV)T
is near zero to become smaller and smaller
as the point of change is approached. When

(BP/BV)T first has an infinity, the associated
van der Waals loop will at first, be very small,
but its prominence will increase as one recedes
from the point of change.

In the A. transition in liquid 4He it has been
observed' that (BP/BT)V and (BV/BT)P both
increase in the neighborhood of the A. line.

However, (BP/BT)V cannot become infinite
—it eventually rounds off to a finite value —and

since (BP/BV)T = (BP/BT—)V/(BV/BT)P, it is
only in this region that (BP/BV)T becomes very
small. If this behavior is typical, then we may
say in general that as Y approaches the end
of the region in which it is a pressurelike pa-
rameter, the region in which (BP/BT)v rounds
off will also become small. Finally, when the
point is reached where F becomes volumelike,
(BV/BT)P becomes the coefficient which rounds

off, and (BP/BT)V would become infinite if this
unstable situation could actually be realized.

In solutions of 'He in 'He it has recently been
found' that the coexistence or solubility curve
for the phase separation, which occurs at low

temperatures, does not have a rounded top,
but consists of two more or less straight lines
(one being the 'He-rich branch, the other the
«He-rich branch), which meet the A. curve at
their intersection; thus the two transitions seem
to be intimately related. This suggests, but

of course does not prove, that the upper part
of the first-order phase transition is related
to the X transition in the way described above,
except that the parametric variables are the
chemical potential p. and the number n of moles
of He in a fixed quantity of 'He.

I et us consider the total energy ~ of the mix-
ture to be a function of the total entropy S and

of n. We may then write (neglecting PV terms,
or at constant I' we could substitute enthalpy
for &)

d~ = TdS+ (8&/Bn) dn,

= TdS+ p,dn,
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which replaces the usual relation for d~. All
the thermodynamic calculations will go through
as before' with -n replacing V and p replacing
P. No instability occurs if C~ becomes infinite
along a A. line, but instability will occur if Cz
tends to become infinite.

We speculate now that at the end of the X line,
where the phase separation starts to take place,
an infinity in C tends to go over to an infin-
ity in Cz. This seems a fairly reasonable hy-
pothesis. As long as 3He is in low concentra-
tion, the interaction between rotons, which
is responsible for the X transition, would be
expected to depend upon an intrinsic property
of the 4He part, such as its chemical potential.
But as the concentration of 3He increases and
'He itself becomes more intimately concerned
in the transition, the dependence might well
go over into one on concentration.

Some measurements on the specific heat at
constant composition C„have been made on
'He-4He mixtures. 4 In general, Cz reaches
apeak at the X line, but does not appear at be-
come infinite, as, of course, it should not.
It would be much more difficult to obtain mea-
surements of C&, which should become infinite.
Relationships analogous to those with pressure
and volume as the parametric variables should
hold.

The peak of C„along the A. line becomes low-
er as the temperature A, is lowered. This pre-

sumably occurs because the decrease in the
temperature is correlated with a decrease in
the concentration of 4He. The A, transition thus
becomes "diluted. " Also, at a composition
very close to that of the top of the phase-sep-
aration curve, the order-disorder changes in
the phase separation and in the A. transition tend
to overlap in the curve of Cz vs T, which gives
an appearance of rounding off. These phenom-
ena are probably not connected particularly
with the change in the character of the transi-
tion. But it would be very interesting to have
complete thermodynamic data in this region,
in order to be able to test and analyze the ther-
modynamic relationships.

These ideas evolved from a discussion with
Professor W. M. Fairbank. I am also indebt-
ed to Professor J. D. Reppy for giving me a
copy of his article before publication.
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NONLINEAR EVOLUTION OF A TWO-STREAM INSTABILITY*
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Calculations of a two-stream instability have been made by following the motion of the
phase-space boundaries of an incompressible and constant-density phase-space Quid.

Because of the condensation of holes, which to a good approximation act as gravitational

particles, large-scale nonlinear pulses develop.

This Letter presents a picture of the nonlin-
ear development of a two-stream instability
that has resulted from numerical experiments
with the one-dimensional Vlasov-Poisson equa-
tions. The motion of the electrons is described
by Vlasov's equation

&t Bx' Bx Bv

There is a uniform neutralizing background,

and the potential p is determined from Pois-
son's equation

8 2' 88f—-1
Bx

~here &u~ is the plasma frequency and v ~ is
a constant chosen so that in the mean, ffdv/
vo

We picture the distribution function f(x, v, t)
as the density of an incompressible "phase
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