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DETERMINATION OF THE SCATTERING AMPLITUDES FROM POLARIZATION MEASUREMENTS
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A necessity condition is proved for the set of polarization measurements which have to
be performed for a full determination of the scattering amplitudes at fixed angles. The
special cases of resonance scattering, Regge poles, and potential scattering are discussed.

Introduction and main result. —Scattering
processes are completely described by N
=Q (2j +1) scattering amplitudes R~
=R~&. . .~ which are functions of the dynammy ~ mn
ical variables. Each m & labels the magnetic
quantum number of the intrinsic spin jz of the
vth particle in some suitable coordinate sys-
tem and n is the number of particles with spin
j10 in the reaction. In some cases the num-
ber N of independent amplitudes can be reduced
by parity conservation, etc.

By measurements, however, linear combi-
nations of bilinear products R~ R~,* are

t m
determined. There are N' linearly independent
measurements at given dynamical variables.
These include measurements of the polariza-
tion of all incoming and outgoing particles in
coincidence, which is in general outside the
reach of experimental possibilities.

Because (R~ R~, )*=(R~„,R~&*), the
A' possible measurements give N real param-
eters from which 2N-1 real parameters of the
amplitudes can be determined while one over-
all phase is undeterminable. Conversely these
2N-1 parameters uniquely determine the NP

measurements.
This leads to the following question: what

measurements are necessary and which sets
of measurements are sufficient to determine
all the scattering amplitudes R~ up to a com-
mon phase?

In the present paper the following necessity
statement will be proved'. If. no phase analy-
sis is performed, the polarization of each par-
ticle (with jt0) must be measured in coincidence

with at least one other polarization, and this
in such a way that it is impossible to divide
the particles into two sets with no polarization
correlation measured between a particle from
one and a particle from the other set, unless
the missing information according to this cri-
terion can be obtained from the performed mea-
surements by the use of symmetry operations
which interchange the role of the particles in
the reaction. ' A continuous family of possible
amplitudes will be found if this condition is not
met. '

A mathematical exception to this statement
will be given at the end of the proof and the phys-
ical meaning of the exception will be discussed
in the last paragraph. The statement holds with
or without parity conservation. The proof, how-

ever, will be given only without consideration
of parity. '

Proof. —To prove the above statement we
divide the particles with j t 0 into two sets S,
and S2 and show that even if all possible cor-
relation measurements within the two sets are
performed there is still a continuous family
of solutions for the scattering amplitudes.

Let n and P denote all possible combinations
of the magnetic quantum numbers m;, for iCS,
and iCS„respectively. Then the set of am-
plitudes R~ can be written in form of a (non-

V.
square) matrix R = (R~p) which can be inter-
preted as a mapping R: ES -ES of the pro-

1
duct space ES of the particles in S, into the

2
product space ES of the particles in S,.1

Now measurements where all particles of
S, are unpolarized give bilinear products which
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are averaged over P and the complete deter-
mination of IJ,

a =5
p ~p o. 'p '

or in form of a matrix

is the maximum information obtainable from
such measurements. Conversely, knowledge of

(2)

contains the maximum information obtainable
from measurements where the particles of
S, are unpolarized.

Now assume that R is a simultaneous solu-
tion of Eqs. (1) and (2). Then R'=RU with uni-
tary U and [U, G] =0 is also a solution as can
easily be seen. A continuous family of such
U's exist since 6 is Hermitian.

It remains to be checked if R' =AU contains
other solutions than just R'=Re +. For this
we remark that

rank(R) = rank(G) = rank(H)

and for the kernels A. of the mappings~ we have

ff (R) =f~(G) =ft. (R ) =Z(RU).

(5)R =s t,

Consequently R(R) and its orthogonal comple-
ment R(R)i are invariant under U and there-

z-Lfore U is the direct sum of U+ and U+ where
z-L

U and U+ are automorphisms of R(R) and
K(R)i, respectively. Now every vector x
can be written uniquely as a sum x =x, with
x,CE(R) and x,CE(R)i. But Rx, =RUx, =0 while

Rx, gRUx, if x, gUx, .' Since Rx=R'x for all
x implies that R =R', we find that U+ does not
affect R while different U+ give different R',
and R'=Re'& if and only if U& =Ie'&. Since
the dimension of K(R)i equals rank(R) this leads
to the following results: (1) rank(R) =0; this
trivial case is equivalent to Rm —= 0. (2) rank(R)im p
=1; here we have always U+ =Ie'&. Since S,
and S, contain particles with j4 0 this is an
"accident. " (3) rank(R) ~ 2; then there exist
nontrivial U& and an at least [rank(R) —1]-
dimensional manifold of amplitudes which dif-
fer by more than a phase.

Thus the statement of the first paragraph
holds with the exception of the cases where
ra~(R) -1.

Discussion of rank(R) = 1.—We first remark
that if rank(R) =1 the amplitude can be factor-
ized:

where the vector t*=(tp~) spans (the one-di-
mensional) E(R) and s~ =gpR~ptp*[gptp~tp]
We now discuss some specific examples.

First consider a+b -c+d. If this reaction
goes over an intermediate j = 0 resonance the
amplitude factorizes into production and de-
cay amplitudes according to Eq. (5) with S,
=(c, d) and S, =(a, b] (i.e., R~ ~d. ~ ~b
=s~~~~t~~~b, where s and t are the decay
and the production amplitude, respectively).
A similar conclusion holds for

a+b-c+d
—e+f

with S, = (a, b, d) a,nd S, = (e,f] if c is a j = 0 res-
onance.

In Regge-pole theory the corresponding sit-
uation is encountered for the crossed channel
if the factorization conjecture' for the residues
is assumed to hold and if only one Regge pole
contributes to the asymptotic scattering am-
plitude. Here the restriction to spin 0 for the
contributing trajectory does not hold since the
kinematical factors can be factorized in the
asymptotic limit. ' lf the reaction is a+b - c
+d and the trajectory is in the crossed chan-
nel a+c-b+d, Eq. (5) holds with S, =(a, c)
and S,=fb, d).

A third example is given by potential scat-
tering without spin coupling.

It should be remarked that in general the re-
action amplitude cannot be factorized if in one
set there is only one particle unless this is
coupled to a spin-0 particle.

Finally, remark that the theorem proved
applies for the determination of ~ and s in Eq.
(5) independently.
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'A more complete analysis will be given elsewhere.
An example of such a symmetry operation is time

reversal in elastic scattering which allows interchange
of the roles of incoming and outgoing particles. Mea-
surements of correlations between the incoming parti-
cles thus already contain the information which could
be gained from correlation measurements between the
outgoing particles. Other examples are permutation of
identical particles, or CP invariance for particle-anti-
particle scattering (see also Ref. 1).

Thus, to take just the 2Ã-1 easiest measurements
can be completely misleading.

4Remark that H and G can be interpreted as endomor-
phisms of Eg and Eg, respectively. The kernel of a

1 2'
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mapping is, as usual defined as the set of all vectors
which are mapped on the zero vector.

This is well known, otherwise R(x2—Ux2) =0, i.e.,
x 2

—Ux
& Q E(R), which is impossible since with x 2 and

Ux2 also their difference is in'(R)
6M. Gell-Mann, Phys. H,ev. Letters 8, 263 (1962).
70. C. Fox and Klliot Leader, Phys. Rev. Letters 18,

628 (1967).

ERRATA

TOTAL AND DIFFERENTIAL CROSS SECTIONS
FOR w-+P —q+n FROM THRESHOLD TO 1300
MeV. W. Bruce Richards, Charles B. Chiu,
Richard D. Eandi, A. Carl Helmholz, Robert W.
Kenney, Burton J. Moyer, John A. Poirier,
Robert J. Cence, Vincent Z. Peterson, Narender
K. Sehgal, and Victor J. Stenger [Phys. Rev. Let-
ters 16, 1221 (1966)].

(1) The lower limit of integration in Eq. (2)
should read

P 'cos(q j2).
max

(2) The caption of Table I should be, "Partial
g-production cross section, ratio of g to m pro-
duction, and coefficients of the Legendre-poly-
nomial expansion of the q differential cross sec-
tion, normalized to the partial-production cross
section. Errors given for the coefficients do not
include error of normalization. "

EXACT RELATION FOR MAGNON THEORIES
OF MAGNETISM AND ITS CONSEQUENCES IN
CALCULATIONS OF MAGNON SPECIFIC HEATS.
R. E. Mills [Phys. Rev. Letters 18, 1189 (1967)].

In Eq. (9), the right-hand side should read
25&~(S&z). In Eq. (13), the factor (u. -gpBIf)
should be replaced by (a. +gp~). In Eq. (14),
the integrand should read p(q; &u) [~+ggBlf
+2zJy /(e~~-l)].
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