
VOLUME 19, NUMBER 5 PHYSICAL REVIEW LETTERS $1 Jvr.v 1967

ASYMPTOTIC CHIRAI SYMMETRY

J. Schechter and G. Venturi
The Department of Physics and The Enrico Fermi Institute for Nuclear Studies,

The University of Chicago, Chicago, Illinois
(Received 14 June 1967)

In this note we point out a general consisten-
cy between the predictions of asymptotic chi-
ral SV(3)S SU(3) invariance" and the extrapo-
lations to large spacelike momentum transfer
of the usual phenomenological fits to vector
and axial-vector baryon form factors.

The point of view we take is the one often
stressed by Nambu. ' Chiral SU(3) CRSU(3) invari-
ance is considered to be a fairly good symme-
try of nature so the various chiral "charges"
are (partially) conserved. However, because

of its large mass the nucleon cannot ordinar-
ily approximate to an eigenstate of these charg-
es, and we may expect the usual group-theory
approach to be misleading. On the other hand,
for vertex functions involving extremely large
momentum transfers even the nucleon mass
may be negligible and there is a possibility that
assigning the baryons to definite chiral repre-
sentations will result in interesting predictions.

In the limit ot SU(3) degeneracy we have the
following expressions for the vector and pseu-
dovector form factors of the octet baryons:

y (p)iV„(o)i~(p)&=, „.u-(p) y [d, (q )D, +f, (q ), ]by. 0 0 1

+ "
[d (q )D +f (q )& ] u(P),

(¹(p')tP (0) )N(p))=, i,u(p') y y [d (q )D +f (q )& ]by.

iq
+ "y [d (q )D +f (q )& ] u(p)

In Eqs. (1) y u and & u are the vector and pseudovector currents, M is the baryon mass, D&u and

&t,u are the symmetric and antisymmetric SU(3) matrices, and q =p-p'
We shall assume that t:he eight baryons belong (asymptotically) to the eight-dimensional [(8, 1), (1, 8)]

representation of chirai SU(3)gSU(3). The other usual assignments bring in extra states which, be-
sides being hard to explain away, lead to bad results in our scheme. Assuming the vector and axi-
al-vector currents to transform as (8, 1)+ (1, 8) then leads to the predictions

d, (q )=d, (q ),
2 V 2

f, (q ) =f, (q ),

d. (q ) =f.(q ) =d. (q ) =f. (q ) = o. (3)

For completeness we note that the [(3, 3*), (3*,3)] and [(6, 3), (3, 6)] representations would also give
Eq. 3; but instead of Eq. (2),

and

d, (q )=f, (q ),

f, (q )=d, (q ),
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d, (q ) =f, (q )-3 d, (q ),
2 V 2 2 V 2

f&(q )=3f~ (q )+9d, (q ),
2 2 V 2 5 V 2
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respectively.
Equations (2) and (3) are expected to hold only at large spacelike q'. For their mutual consisten-

cy it is necessary that the "induced" form factors of Eq. (3) fall away faster at large q' than those
of Eq. (2). We now check to see that this is indeed the case if the usual form factor fit is extrapolat-
ed. The vector form factors are related to Sachs's form factors as follows:

dl (q )= 2(I-+7) (G~ +«),

f (q ) (I+~) [G +-G +~(G +-G )],
V 2 -1 p 1 n p 1 n

f (q )=(1+T) (G + —G -G ——G ),
V 2 —1 p 1 n p 1 n

M

where r =q, /4M'.

Empirically' the following relations appear to hold:

G /p, =G /p. =G& =-G,

n =0, (7b)

where p =2.79 and pn=1. 91. Combining Eqs. (6) and (7) gives the asymptotic behaviors (q'» 4M')
p

V 3 V 1
d -——pG; f -(p, + —p)G;12n'1P2n (8)

d - ——
p, G(4M'/q'); f —(p. + —p, —1)G(4M /q').

2 2 n ' 2 P 2

Thus we see that Eqs. (2) and (3) are consistent at large q' if our extrapolation is allowable. Normal-
ly' G is taken to be the "double-pole" expression:

G= (1+q'/M ')-'
'U

(10)

with M '=0.71 (BeV)'. The precise theoretical meaning of Eq. (10) is not clear, but it agrees with
the experimental data so far obtained.

In the case of the axial-vector form factors the greater fall-off of the induced term is guaranteed
if we use Nambu's partially conserved axial-vector current argumente which yields

4M' 4M'

where p. is the pseudoscalar meson mass.
It is interesting to observe how Eq. (11) is roughly maintained in the approximation where the ax-

ial-vector current is dominated by a pion pole plus an axial-vector meson pole. Here we have for
the neutron I3-decay axial current

iM -gM'y7 ( q q) iq y g 4M'

-iM g M ' iq y (M —p.
' 4M'

(p p ')'~~ q'+M '
p, 5 2M k M q'+ p,

'
0 0 a a

(12)
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where Ma is the axial-vector mass and g~ =1.18.
The presence of the term q q~ in the axial-vec-
tor meson propagator enables us to write the
expression in essentially Nambu's form. ' With
this reassurance, let us assume by analogy
that the following double-pole expression for
the axial-vector form factors is valid:

With this choice a double pole without extrane-
ous kinematical factors appears also in the Breit
frame. In Eq. (13) we have taken the param-
eter to be the axial-vector meson mass by the
analogy that the corresponding parameter for
the vector form factors is compatible with an
average vector-meson mass. Actually we may
even use a completely different high-energy
form such as that of Wu and Yang. '

Using Eqs. (8) and (13) in the chiral SU(3)
%2ISU(3) relation, Eq. (2) gives the remarkable
result

d (o)
1 n —1.56f (0) 2p. + p,

(14)

which is to be compared with the experimental
value' of 1.7. If we had used Eqs. (2) at small
q' we would have instead found d, (0)/f, (0) = 0.
This result led Gell-Mann' to reject the assign-
ment of the ~+ baryons to the [(8, 1), (1, 8)] rep-
resentation at low q'. We stress that Eq. (14)
requires only the assumption that Eqs. (7) hold

asymptotically, not the detailed choice of a
"double-pole" fit. In the same way Eqs. (4)
and (5) would lead to the bad results d, (0)/f, (0)
= 0 and 2~ for the cases of the [(6, 3), (3, 6)] and

[(3, 3*), (3*,3)] baryon assignments, respectively.
We note that the significance of the [(8, 1),

(1,8)] representation for the baryons becom-
ing asymptotically suitable may reflect noth-
ing more than the fact that the term

—a b
y 8 N

b p, p. a

(&~ =baryon octet field) in the effective strong-b

interaction Lagrangian becomes dominant in
the high-energy region. This term is easily
seen to be chiral SU(3) S SU(3) invariant with
the octet baryons belonging to [(8,1), (1,8)].
At more usual energies where other terms
contribute substantially, it is not clear that
this irreducible representation assignment has

any meaning. However, one may hope that at
low energies the unit baryon-number states
(baryons and pseudoscalar mesons) can be as-
signed to a reducible representation of SU(3)
48I SU(3) in such a way that in the high-energy
limit we recover our results.

Now if we become more speculative and as-
sume that the "double-pole" fit actually holds
for q' well beyond the present experimental
region, we find the following amusing relation:

(1 5)

Putting experimental numbers into Eq. (15)
leads to

(18 /M )~ = 3.99.
a v

We note that this value agrees almost exactly
with Weinberg's result M~/1Vi~ =v 2, although
we have no rigorous reason to associate Mz
and Ma with the p and A., resonances. The use
of a different high-energy form such as that
of Wu and Yang' would lead to a similar rela-
tion between the vector and axial-vector charge
radii.

To summarize, we point out that the use of
asymptotic chiral SU(3) jgI SU(3) invariance leads
(in order of increasing speculation) to the fol-
lowing three consistencies with the above ex-
trapolations of vector and axial-vector form
factors: (a) For large q the induced form fac-
tors fall off faster than the direct ones. (b) A

good value for axial d/f ratio at zero-momen-
tum transfer emerges. (c) A plausible expres-
sion for the axial-vector renormalization con-
stant is found.
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A necessity condition is proved for the set of polarization measurements which have to
be performed for a full determination of the scattering amplitudes at fixed angles. The
special cases of resonance scattering, Regge poles, and potential scattering are discussed.

Introduction and main result. —Scattering
processes are completely described by N
=Q (2j +1) scattering amplitudes R~
=R~&. . .~ which are functions of the dynammy ~ mn
ical variables. Each m & labels the magnetic
quantum number of the intrinsic spin jz of the
vth particle in some suitable coordinate sys-
tem and n is the number of particles with spin
j10 in the reaction. In some cases the num-
ber N of independent amplitudes can be reduced
by parity conservation, etc.

By measurements, however, linear combi-
nations of bilinear products R~ R~,* are

t m
determined. There are N' linearly independent
measurements at given dynamical variables.
These include measurements of the polariza-
tion of all incoming and outgoing particles in
coincidence, which is in general outside the
reach of experimental possibilities.

Because (R~ R~, )*=(R~„,R~&*), the
A' possible measurements give N real param-
eters from which 2N-1 real parameters of the
amplitudes can be determined while one over-
all phase is undeterminable. Conversely these
2N-1 parameters uniquely determine the NP

measurements.
This leads to the following question: what

measurements are necessary and which sets
of measurements are sufficient to determine
all the scattering amplitudes R~ up to a com-
mon phase?

In the present paper the following necessity
statement will be proved'. If. no phase analy-
sis is performed, the polarization of each par-
ticle (with jt0) must be measured in coincidence

with at least one other polarization, and this
in such a way that it is impossible to divide
the particles into two sets with no polarization
correlation measured between a particle from
one and a particle from the other set, unless
the missing information according to this cri-
terion can be obtained from the performed mea-
surements by the use of symmetry operations
which interchange the role of the particles in
the reaction. ' A continuous family of possible
amplitudes will be found if this condition is not
met. '

A mathematical exception to this statement
will be given at the end of the proof and the phys-
ical meaning of the exception will be discussed
in the last paragraph. The statement holds with
or without parity conservation. The proof, how-

ever, will be given only without consideration
of parity. '

Proof. —To prove the above statement we
divide the particles with j t 0 into two sets S,
and S2 and show that even if all possible cor-
relation measurements within the two sets are
performed there is still a continuous family
of solutions for the scattering amplitudes.

Let n and P denote all possible combinations
of the magnetic quantum numbers m;, for iCS,
and iCS„respectively. Then the set of am-
plitudes R~ can be written in form of a (non-

V.
square) matrix R = (R~p) which can be inter-
preted as a mapping R: ES -ES of the pro-

1
duct space ES of the particles in S, into the

2
product space ES of the particles in S,.1

Now measurements where all particles of
S, are unpolarized give bilinear products which
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