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Migdal's theory of nuclear structure is recast in the shell-model language, enabling
us to show that the excellent agreement with experiment of the theory applied to the total
muon-capture rate is obtained by an appreciable symmetry breaking of the Wigner's
SU(4) supermultiplet structure contrary to other models where the symmetry seems to
be well preserved. Thus, the p, -capture result is inconsistent with the dipole photoab-
sorption and inelastic electron scattering processes reflecting the possible breakdown
of the quasiparticle hypothesis.

Recent successful calculation of the total p,-
capture rates in complex nuclei by Bunatyan'
using Migdal's theory' has an important impli-
cation in that none of current nuclear models
has succeeded in reducing the theoretical cap-
ture rates to the experimental values. Because
of the close analogy between the muon capture,
the dipole photoabsorption, and inelastic elec-
tron scattering, success in one might natural-
ly lead to better understanding in others. The
trouble with Bunatyan's calculation is, howev-
er, that it is not clear how and why Migdal's
theory works. The situation is quite different
from the case of partial-capture rates involv™
ing low-lying states, ' where the transition ma-
trix elements can be directly related to static

magnetic and quadrupole moments and P-decay
transition rates, etc.

%e demonstrate in this Letter a mechanism
by which Migdal's approach can obtain the fit.
For this we consider for simplicity the reac-
tion p, + 0'6(0+; ground state) - v+ N'8 (all final
states). If we take the standard Fujii-Prima-
koff Hamiltonian~ assuming the validity of the
universal Fermi interaction (UFI) hypothesis, '
then the capture rate for the process 0+- all
final states in terms of the coupling constants
G~ g ~ is proportional to

K +3G 3R +(G —2G G )II

where

If ]]fl Z 9 (i)exp[-fv ~ r(~')]10+]t*,

where Q&=z, QA= (I/v3)r o, Q&=7 v o, vf the neutrino energy, m&the muon mass, and )f)
an exact final state. We neglect in o] . discussion recoil corrections which amount to about 10%.
Migdal's theory provides a means of calculating Eq. (2) in terms of a renormalized single-particle
operator tR (the renormalization is caused by the presence of multi-quasiparticle configurations),
a vertex function &(+), and the pole part of the Green's function A:

(2)

i(fit)0+)I =Res(g (Olt In)A (nil(~)i0))

where &uy is the transition energy. In matrix notation E satisfies the equation K =f +rA&, where'
I' is the interaction amplitude to be defined below.

The crucial point of our discussion is the theorem' relating Migdal's method to the more familiar
shell-model (SM) approach If the quas. iparticle hypothesis holds for all excitations and if the dis-
cussion is limited to closed shell nuclei, the following rules' give Migdal's result:

(A) Diagonalize in one-particle, one-hole (1p-1h) space the nuclear Hamiltonian with the matrix
element of the residual interaction given by the direct term of I', where I" is the Fourier transform
of I

r =V (~ r )g (f '+g 'al o2)& (Pl P2/PF'), (4)
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where P stands for Legendre polynomial. This
prescription gives the wave function (f ) and
eigenvalue vf. It is easy to show that &(v) in
Eq. (3) has a pole at ur = &of.

(B) Evaluate the matrix element of the oper-
ator t between If ) and )0). Invoking the qua-
siparticle hypothesis once more leads to the
simple result'

12.15
26.35
Sum

0.038
0.258
0.296

&able I. Capture rates for p +0 8(0+, g.s.) vj ~ 0 p
+ N~e(T = 1, 0,1,2 ) in 10 sec

(5)

where e(t) is the state-independent "effective
charge" of an operator t. The "effective charg-
es" in Eq. (2) are e(7A, ), e(7 o), and e(7. g v).
It follows from these prescriptions that any
difference between Migdal's and other SM re-
sults should be found in Eqs. (4) and (5).

Table I contains the results of such calcula-
tions using the following values of Migdal's con-
stants' (with V,/4m = 35 MeV F'):

11.88
15.44
17.82
19.52
24.92
Sum

10.85
16.00
17.08
19.62
22+23
Sum

0.282
0.304
0.208
1.964
2.027
4.785

0.666
0.138
0.005
1.918
1.156
3.883

f,' = 0.35, g, ' = 0.50, & = 0.05. (6)

Here g measures the renormalization of the
spin operator, e(7 v) =e(T,c)=1—2g. Equation
(5) and the nonrenormalizability of scalar ver-
tices~ imply that e (~ ) = 1. The values given
in (6) correspond to those used by Bunatyan, '
and describe correctly most of the properties
of low-lying states' as was discussed in Ref. 3.
Unlike Bunatyan, however, we have computed
only the first forbidden (dipole) transition rates,
leaving out the other multipoles 0+, 2+, 3
4+, 5, etc. The sum over the first forbidden
transitions yields

A =8.96x10~ sec
D

(7)

This is essentially Bunatyan's result, "to be
compared with the corresponding pure shell
model (i.e., V, = g =0) value 17 x 10~ sec

In order to compare with experiment, one should
add the contributions from other multipoles
(denoted by AOM). Various models' predict
AOM to lie between 10 and 20% of the total cap-
ture rate. " If we take this range, we obtain
for A2 -=AD+ApM

9.95xlo~ sec '&A &11.2x104 s c '. (8)

11.22
16.24
23.47
Sum

0.014
0.007
0.009
0.030

aCalculated with V0=4m x 35 MeV F3, fo' =0.35, go'
= 0.50 and the pseudoscalar to axial-vector weak cou-
pling constant ratio C~ = 8. Radial wave function is
taken to be harmonic oscillator with length parameter
b =(I/m&u)~'=1. 75 F.

Energy in MeV relative to the ground state of 0 8.

is implied by. the rules (A) and (B). Equation
(9) holds exactly in the absence of spin-depen-
dent forces" and was assumed in all other cal-
culations. We now assert that the success of
Migdal's theory in getting the correct results
is based on a large deviation from these equal-
ities. According to (B),

Although recoil corrections would raise AT
somewhat, it is in essential agreement with
the experimental value Aexpt = (9.8 a 0.3) x 104

sec
In order to understand how the result (8) comes

out, it is necessary to examine what modifica-
tion to the supermultiplet relation

2

Zl I i&fig io&~'i'

f (m j V
(Io)

The ratio in the curly bracket is usually about 1.13 if one were to take I' to be the shell-model ef-

249



VOLUME 19, +UMBER 5 PHYSICAL REVIEW LETTERS 31 JULv 1967

fective force ". But Migdal's amplitudes [Eq.
(6)] contain much stronger spin dependence
than the ordinary SM forces. As a comparison,
using the relationship between the SM constants
ap ~ & o& and the Migdal constants f, ', g, ',
etc. , i.e., fp = ——,'(—ap —3ao+5aT+3a~~) and

gp = +(-ap-ao+a~+ 3ao~), one finds that the
Soper mixture" is equivalent to f,'=0.49 and

g, '=0.28 for the given strength constant V, .
It is known that the effect of increasing g, ' is
to rob the axial-vector strength of the low-ly-
ing states of J= 2 leading to a large suppres-
sion of K&. This is exhibited in Table II, where
the percentage deviation from the supermulti-
plet symmetry 5R~/KV = 1 is given as go' varies
for a fixed f,'. For the constants of (6), the
ratio is

K /Slt (0.76,
V

which is an appreciable deviation from the usu-
al particle-hole model value of 1.13. The in-
equality is put in cognizance of the possibility
that t;) 0.05." As for the relationship between

Kg and KP, we find that the equality holds to
within 1%, because both SR~ and%~ contain
the operator 0 and are influenced by the same
spin-dependent amplitude g, '. Assuming the
UFI together with one-pion-pole dominance for
the weak coupling constants, e one gets from
the above considerations

where the superscripts M and P stand for the
Migdal and the pure shell-model values. This
is just the amount of reduction needed in 0'
to obtain the result given by (7). The situation
is similar in Ca

If the suppression of the axial-vector term
relative to the vector term is the only mecha-
nism, as our theorem implies, it then follows
that the wave functions which yield the capture
rates for the 1 states in Table I will exhaust
the dipole photoabsorption sum rule below 30
MeV contrary to the experimental observation,
where only a part of the classical sum-rule
strength is found. " This is a well-known dif-
ficulty with all 1p-1h shell-model descriptions.
In Migdal's theory it appears as an evidence
for the breakdown of the quasiparticle hypoth-
esis either in deriving Eq. (3) or in writing
down an energy-independent form Eq. (5) or
both.

Table II. Supermultiplet symmetry breaking K=—100
x (1—K~/5Ry) as a function of go' for fo' =0.35, e(v 5)
= 0.90.

&0 (%)

0
0.30
0.50
0.70
0.90

5-14
17
24
31
38

Calculated with e(v 0) =1.

It is probably not feasible to do any practical
calculation without invoking the hypothesis to
obtain Eq. (3). Even if we take Eq. (3), the
energy independence of tR is not likely to hold
if one is concerned with higher excitations such
as the giant resonance region. This is because
the separability of the Green's function is high-
ly doubtful at such excitation energy. In order
to incorporate into Migdal's method the fact
that a large fraction of strength is located above
the giant resonance region due to the ground-
state correlation and the coupling to more com-
plex configurations than the 1p-1h ones, it
seems necessary (for such a region) to have
e (r ) = e (r,) effectively reduced from unity.
The same applies to the renormalization of
vector operators. As we have learned in Ref.
3, the constants given in (6) are consistent with
the experimental values of the transverse form
factors F'(q) for the process e +0"(0+;T=0)
-e +0'e(2; T =1;E*=13MeV). But for the
transition to the giant magnetic quadrupole res-
onance" state (T =1, Z~ = 2, 8*=20.2 MeV),
the theoretical E'(q) for increasing momentum
transfer q overestimates the experiment by
more than 40%. Since the large q selects out
the 0-dependent term, this implies that the
20 2-MeV .state also requires e(7 o) =e(7,o)
effectively reduced from the quasiparticle val-
ue (1-2g). Thus, if Migdal's approach is to
be consistent with these experiments while keep-
ing the simple form of Eq. (3), it seems nec-
essary to take into account the energy depen-
dence of the operator tR. Details will be report-
ed elsewhere.

I am grateful to Professor M. E. Rose for
encouragement. I also thank Professor I. Tal-
mi for the critical remark which led to this
work, and Dr. A. Green and T. T. S. Kuo for
helpful conversations.
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