EXCLUSION PRINCIPLE AND THE NEUTRON-ALPHA EQUIVALENT POTENTIAL

Peter Swan*

Département de Physique, Université Laval, Québec, Québec, Canada (Received 15 June 1967)

Because of the exclusion principle, the phase/binding energy-equivalent $n-\alpha$ potential in the S state should have a repulsive core or Pauli barrier $V(r \rightarrow 0) \rightarrow (\hbar^2/2\mu)6/r^2$. A distorted inverse-square barrier wave approximation is used to deduce from experimental phases an entirely repulsive, l=0 $n-\alpha$ potential.

Resonating group structure calculations, employing central nucleon-nucleon potentials^{1,2} and tensor forces,³⁻⁵ predict $n-\alpha$ elastic scattering phases $\Delta_{l}(k)$. These show $\Delta_{0}(0) = \pi$, $\Delta_{0}(\infty)$ = 0, with ⁵He unbound $(n_{0} = 0)$.

A many-body Levinson theorem⁶ predicts m_0 redundant bound-state-type solutions to the wave equation (m_0 = number of "excluded" composite bound states). If the potential (part central, part nonlocal) satisfies

$$\int_{0}^{\infty} dr \, r^{j} \, | \, U(r) \, | \, dr < \infty, \quad j = 1, 2, \tag{1}$$

$$\int_{0}^{\infty} dr r^{j-1} \int_{0}^{\infty} dr' r' |K_{0}(r,r')| < \infty, \quad j = 1, 2, \quad (2)$$

then

$$\Delta_0(0) - \Delta_0(\infty) = (n_0 + m_0)\pi, \quad \Delta_0(\infty) = 0.$$
 (3)

We require a two-body $n-\alpha$ central potential which is phase/binding energy-equivalent to the above.

Condition (1) gives phases $\eta_0(k)$ satisfying Levinson's theorem:

$$\eta_0(0) - \eta_0(\infty) = n_0 \pi, \quad \eta_0(\infty) = 0.$$
(4)

Since $n_0 = 0$, one has $\eta_0(0) = 0$, requiring $\eta_0(k) = \Delta_0(k) - \pi$; but since $\eta_0(\infty) = -\pi$, condition (1) is broken, invalidating (4). Thus the potential function $U(r) = (2\mu/\hbar^2)V(r)$ has a repulsive core or Pauli barrier $U_{\text{s.c.}}(r \to 0) \to 6/r^2$ (exclusion-principle effect). An intrinsic repulsive core in the nucleon-nucleon potential may be absorbed in cut-off factors.

One form of the Eckart potential possessing this property is

$$U_{\text{s.c.}}(r) = 6\lambda^2 e^{-\lambda r} / (1 - e^{-\lambda r})^2.$$
 (5)

Its solutions, regular and irregular, respective-

ly, at
$$r = 0$$
, are⁷
 $F_0(k, r) = N(k) [-\{4k^2 + \lambda^2 - 3\mu^2(r)\} \sin kr + 6k\mu(r) \cos kr],$
 $G_0(k, r) = N(k) [-\{4k^2 + \lambda^2 - 3\mu^2(r)\} \cos kr - 6k\mu(r) \sin kr],$ (6)

where

$$N(k) = \frac{1}{2} [(4k^{2} + \lambda^{2})(k^{2} + \lambda^{2})]^{-1/2},$$

$$\mu(r) = -\lambda (1 + e^{-\lambda r}) / (1 - e^{-\lambda r}).$$
(7)

We have

$$F_{0}(k, r \to 0) \approx r^{3}, \quad F_{0}(k, r \to \infty) = \sin(kr + \delta_{0}),$$

$$G_{0}(k, r \to 0) \approx 1/r^{2}, \quad G_{0}(k, r \to \infty) = \cos(kr + \delta_{0}), \quad (8)$$

the properties for $r \approx 0$ being similar to D waves. Also,

$$k \cot \delta_0(k) \equiv -C_{00} + C_{01}k^2, \qquad (9)$$

with

$$\delta_0(0) = 0, \quad \delta_0(\infty) = -\pi,$$

and

$$C_{00} = \frac{1}{3}\lambda, \quad C_{01} = \frac{2}{3\lambda}, \quad C_{0n}(n \ge 2) \equiv 0.$$
 (10)

For $n-\alpha$ l=0 scattering, $E \le 8$ MeV phase analysis yields

$$C_{00} \approx 0.3999 \text{ F}^{-1},$$

 $C_{01} \approx 0.6475 \text{ F}, \quad C_{02} \approx -0.02987 \text{ F}^3.$ (11)

Fitting $C_{00} = 0.3999$ via (10) gives $\lambda = 1.1997$ F⁻¹, implying $C_{01} = 0.5557$, $C_{02} = 0$ -an approximate fit to (11).

Note that an infinite square barrier (hard core) of width b has

$$C_{00} = 1/b$$
, $C_{01} = \frac{1}{3}b$, $C_{02} = b^3/45$, \cdots ;

and fitting $C_{00} = 0.3999$ leads to $b \approx 2.5006$ F, with $C_{01} = 0.8335$, $C_{02} = 0.3475^{-}$ a much worse fit than for the Pauli barrier. The distorted inverse-square barrier wave approximation (DISBWA) method calculates the departure of U(r) from $U_{S,C}(r)$ via

$$U(r) = U_{\text{s.c.}}(r) + U_{p}(r),$$

$$U_{p}(r) = -\sum_{n=1}^{N} B_{n} \exp(-\lambda_{n}r)$$
(12)

with $\lambda_n = \lambda_1/n$, say. The scattering wave function satisfies

$$u_{0}(k, r - 0) \approx r^{3},$$

$$u_{0}(k, r - \infty) = v_{0}(k, r) = \sin(kr + \eta_{0}), \qquad (13)$$

so that

$$u_{0}(k,r) \approx F_{0}(k,r) \cos(\eta_{0} - \delta_{0}) + g_{0}(k,r)G_{0}(k,r) \sin(\eta_{0} - \delta_{0}), (14)$$

where $g_0(k, r)$ is a form factor with properties

$$g_0(k, r \to 0) \approx r^5, \quad g_0(k, r \to \infty) = 1.$$
 (15)

A suitable form is

$$g_{0}(k,r) = (1 - e^{-\gamma_{0}r})^{5} [1 + e^{-\gamma_{0}r} \sum_{\nu=1}^{N} \epsilon_{0\nu}(kr)^{2\nu}], \quad (16)$$

where γ_0 and $\epsilon_{0\nu}$ are adjustable parameters.

On using (12), one finds the integral equation for the phase difference $\eta_0 - \delta_0$:

$$\sin(\eta_0 - \delta_0) = -\frac{1}{k} \int_0^\infty U_p(r) F_0(k, r) u_0(k, r) dr.$$
(17)

By substitution of (14) in (17), we get the DISBWA integral equation for $U_{s.c.}(r)$, valid for $|\eta_0(k) - \delta_0(k)| < \pi \ (k > 0)$:

$$\tan(\eta_0 - \delta_0) = K_{10} / (1 - K_{20}), \tag{18}$$

$$K_{10} = -\frac{1}{k} \int_{0}^{\infty} U_{p}(r) F_{0}^{2}(k, r) dr,$$

$$K_{20} = -\frac{1}{k} \int_{0}^{\infty} U_{p}(r) g_{0}(k, r) F_{0}(k, r) G_{0}(k, r) dr.$$
 (19)

We write

$$K_{10} \approx N^{2}(k) \sum_{n=0}^{N} (-1)^{n} \alpha_{0n} k^{2n},$$

$$K_{20} \approx N^{2}(k) \sum_{m=0}^{N} \beta_{0m} k^{2m},$$
 (20)

where α_{0n} and β_{0m} involve weighted moment integrals over $U_p(r)$ and are functions of γ_0 and ϵ_{0n} (n=1-N). Equation (18) reduces to the shape-dependent formula

$$k\cos[\eta_0(k) - \delta_0(k)] \approx \sum_{n=0}^{N} (-1)^{n+1} A_{0n} k^{2n}.$$
 (21)

The numerical coefficients A_{0n} follow from the shape-dependent formulas

$$k \cot \eta_{0}(k) \approx \sum_{m=0}^{N} (-1)^{m+1} C_{0m} k^{2m},$$

$$k \cot \delta_{0}(k) \equiv -\frac{1}{3} \lambda + \frac{2}{3\lambda} k^{2}, \qquad (22)$$

with $A_{0n}(n \ge 2) = A_{0n}(E_{\max})$ and $C_{0m}(m \ge 2) = C_{0m}(E_{\max})$ for $E \le E_{\max}$. One finds a set of linear relations between coefficients α_{0n} and β_{0n} :

$$\sum_{m=0}^{n} \alpha_{0,n-m} \alpha_{0m}$$

= $(-1)^{n} \beta_{0n} - 4(\lambda^{4} \delta_{n0} - 5\lambda^{2} \delta_{m} + 4\delta_{n2}), \quad 0 \le n \le N.$ (23)

This is similar to the standard distorted planewave approximation (DPWA) form,⁸ except for the last bracketed term replacing $-\delta_{n0}$.

Given γ_0 and ϵ_{0n} (1 < n < N) and assuming (12) for $U_p(r)$, Eq. (23) gives N+1 simultaneous equations linear in B_n (n = 1-N), but nonlinear in λ_1 . To find γ_0 and ϵ_{0n} , we expand in powers of k^2 the relation

 $k \cot \eta_0(k) + C_{00}$

$$=k^{2}\int_{0}^{\infty} [v_{0}(k,r)v_{0}(0,r)-u_{0}(k,r)u_{0}(0,r)]dr, \quad (24)$$

obtaining relations for C_{0n} $(1 \le n \le N)$ as functions of γ_0 and (linearly) of ϵ_{0n} $(n = 1 \cdots N)$. We thus obtain γ_0 and ϵ_{0n} from the experimental C_{0n} $(1 \le n \le N)$ values.

Numerical calculations show that to fit C_{00} and C_{01} in (11), we require $\lambda < 1.1999-E$, 0 < E< 0.03. The value nearest to the figure C_{02} = -0.0297 of (11) is for $\lambda \approx 1.10$, where $C_{02}(\lambda)$ has a minimum at $C_{02} \approx 1.22$. We take $\lambda = 1.10$, $\gamma = 0.57166$, and fit C_{02} by using $\epsilon_{01} = -1.2344$, the latter ϵ_{01} value altering $u_0(r)$ from its ϵ_{01} = 0 values by only 2-5% in the interaction region r < 6 F, say.

Solution of (23) with N=1 gives $B_1=0.13703$ F^{-2} , $\lambda_1=0.61544$ F^{-1} , subject to errors of several percent as in DPWA calculations.⁸

FIG. 1. S-wave scattering potential $(k^2 \times 10^{26} \text{ cm}^{-2})$ as function of radius (F). U(r) is the total potential; $U_p(r)$ the nuclear potential component, and $U_{\text{s.c.}}(r)$ (not shown separately) the Pauli barrier.

We get

$$U(r) = 7.26e^{-1.10r} / (1 - e^{-1.107})^2 -0.13703e^{-0.61544r}$$
(25)

in units of \mathbf{F}^{-2} (see Fig. 1). Thus $U_p(r)$ is a very small attractive correction ≈ 3.4 -MeV deep to the Pauli barrier, with range $[U_p(r) = -B_i e^{-2r/b}]$ b = 3.25 F, consistent with an optical-well range based on the nucleon radius $r_0 = 1.256$ F.

Figure 2 shows the $P_{1/2}$ and $P_{3/2}$ potentials found in earlier DPWA calculations,^{8,9} approximately 83 and 110 MeV deep, with ranges 2.18 and 2.34 F, respectively. The *P*-state potentials have strengths consistent with an optical-model potential, but the *S*-state nuclear potential $U_p(r)$ is only a few percent of the strength of an optical well.

The result can be understood if we remember that this is an equivalent two-body problem, involving two neutrons with quantum numbers which would be identical but for one neutron

FIG. 2. *P*-wave scattering potentials as functions of radius. The $P_{1/2}$ potential is compared with the initial and iterated $P_{3/2}$ solution potential. The difference between the $P_{3/2}$ and $P_{1/2}$ potentials is due to spin-orbit effects (energy units are such that $k^2 = 1.0 \text{ F}^{-2}$ corresponds to 25.65 MeV in the c.m. system).

being in an l=0 state in the α -particle c.m. system, and the other in an L=0 state of the $n-\alpha$ c.m. system. Two such free neutrons would have a zero state probability $|u_0(r)|^2=0$, but we treat the α particle as a neutron "tethered" to the α -particle c.m. This neutron has small $L \ge 1$ components in the $n-\alpha$ c.m. system, giving rise to the small residual optical-well interaction $U_p(r)$, and to the finite range of $U_{\text{S.C.}}(r)$. But for the L > 1 components, we would have $\lambda=0$ and $U_{\text{S.C.}}(r)=6/r^2$, so that $\eta_0(k)=\pi$, equivalent to l=2 and $\eta_2(k)=0$, or no interaction in the S state.

Progr. Theor. Phys. (Kyoto) <u>30</u>, 475 (1963).

^{*}Work supported in part by Atomic Energy of Canada Limited and the National Research Council of Canada.

¹B. H. Bransden and J. S. C. Mckee, Phil. Mag. <u>45</u>, 860 (1964).

²S. Hochberg, H. S. W. Massey, and L. H. Underhill, Proc. Phys. Soc. (London) <u>A67</u>, 957 (1954).

³A. Sugie, P. E. Hodgson, and H. H. Robertson, Proc. Phys. Soc. (London) <u>A70</u>, 1 (1957).

⁴S. Nagata, T. Sasakawa, T. Sawada, and R. Tamagaki, Progr. Theor. Phys. (Kyoto) <u>22</u>, 274 (1959).

⁵H. Kanada, S. Nagata, S. Otsuki, and Y. Sumi,

⁶P. Swan, Proc. Roy. Soc. (London) <u>A228</u>, 10 (1955).

⁷V. Bargmann, Phys. Rev. <u>75</u>, 301 (1949).

⁸P. Swan and W. A. Pearce, Nucl. Phys. <u>79</u>, 77 (1966). ⁹W. A. Pearce and P. Swan, Nucl. Phys. <u>78</u>, 433 (1966).