VOLUME 19, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JuLy 1967

EXCLUSION PRINCIPLE AND THE NEUTRON-ALPHA EQUIVALENT POTENTIAL

Peter Swan*
Département de Physique, Université Laval, Québec, Québec, Canada
(Received 15 June 1967)

Because of the exclusion principle, the phase/binding energy-equivalent n-o potential
inthe S state should have a repulsive core or Pauli barrier V(r—0)— (z2/2u)6/7%. A
distorted inverse-square barrier wave approximation is used to deduce from experimen-
tal phases an entirely repulsive, [ =0 n-a potential.

Resonating group structure calculations, em-
ploying central nucleon-nucleon potentials?!?
and tensor forces,3”° predict #-a elastic scatter-
ing phases A7(k). These show A,(0)=m, A ()
=0, with *He unbound (z,=0).

A many-body Levinson theorem® predicts
m, redundant bound-state-type solutions to the
wave equation (m,=number of “excluded” com-
posite bound states). If the potential (part cen-
tral, part nonlocal) satisfies

f:odr'r]IU(r)ldfr <w, j=1,2, (1)

f:odrrj—lf:odr’r’IKO(V,'V’)I<oo, i=1,2, (2)

then
A(0)=Ay(w0) = g+ my)T, Ay()=0. (3)

We require a two-body #-a central potential
which is phase/binding energy-equivalent to the
above.

Condition (1) gives phases 7,(k) satisfying
Levinson’s theorem:

no(o) —1’]0(°0)=7L01T, Tlo(°°)= 0. (4)

Since n,=0, one has 7,(0)=0, requiring 7,(*)
=Aq(k)-7; but since n,()= -7, condition (1)
is broken, invalidating (4). Thus the potential
function U ()= (2u/%2)V(r) has a repulsive core
or Pauli barrier Us.c.(” -0)—~6/72 (exclusion-
principle effect). An intrinsic repulsive core
in the nucleon-nucleon potential may be absorbed
in cut-off factors.

One form of the Eckart potential possessing
this property is

U, )= en2e ™ /(1-e M2, (5)

Its solutions, regular and irregular, respective-

ly, at »=0, are’
Folk,7)= N(R)[~{4r2+ X\2-3u2(r)} sinkr
+6ku(r) coskr),
G,(k,7)= N(k)[ ~{4k%+ X2-3u%(r)} coskr
—6ku(r) sinkr], (6)

where
N(k) =3[ (4R%+ 2\2) (B2 +22)] V2
po)= A1+e /- ). (1)
We have

Fo(k,v =0)=73, F,(k,r —e)=sin(kr+dy),
Gk, 7 =0)= 1/7%, Gy(k,7 —)=cos(kr+§,), (8)

the properties for »= 0 being similar to D waves.
Also,

k cotdy(k)= —Cyo+ Co,fe?, 9)
with
6,(0)=0, 0y(x)= -,
and
c =X c. =2 ¢ @w=2=0. (10
00 37 “01 3 “on

For n-a =0 scattering, E <8 MeV phase
analysis yields

Coo= 0.3999 F,
C,y~0.6475 F, C,,~ -0.02987 FS. (11)

Fitting C,,=0.3999 via (10) gives A=1.1997 F~}
implying Co, =0.5557, Cy,=0—an approximate
fit to (11).

Note that an infinite square barrier (hard
core) of width b has

Coo=1/b, Coi=3b, Cpp=b3/45, «++;

and fitting C,,=0.3999 leads to b = 2.5006 F,
with C,,=0.8335, Cy,=0.3475—a much worse
fit than for the Pauli barrier.
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The distorted inverse-square barrier wave
approximation (DISBWA) method calculates
the departure of U(») from Us.c.(”) via

U(V)=Us.c_(7)+ Up(r),
~ N
Up )= —nzz)an exp(—hnr) (12)

with A, =1q/n, say. The scattering wave func-
tion satisfies

uy(k,7 =0)= 73,
Uk, 7 =) =v,(k,7)=sin(er +1,), (13)
so that
uo(k,7)=Fy(k,7) cos(n,—9d,)
+&,(k, )Gy (k,7) sin(n,—6,), (14)
where g,(%,7) is a form factor with properties
ok, v =0)=v5, g (k, v ~»)=1. (15)

A suitable form is

N
g k)= (1=¢ ") 140770 E ICARNND

where y, and €, are adjustable parameters.
On using (12), one finds the integral equation
for the phase difference 7,-9,:

s1n(170 0 f U (r)F (-, 7 (k r)ydv. (17)

By substitution of (14) in (17), we get the DISBWA
integral equation for Ug . (r), valid for In,(%)
=0,(k) I<m (R>0):

tan(ny,—0,) =K,/ (1-K,,), (18)

Ll 2
Ko =7 U, 0F @k, 7)r,

K20=-%f:Up(r)go(k,'r)FO(k,r)GO(k,r)dr. (19)

We write
o=V (k)E -1"a k
n= 0
2 k) Z} B (20)
m=0

where ag,, and B, involve weighted moment
integrals over Up('r) and are functions of y,
and €y, (#=1-N). Equation (18) reduces to
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the shape-dependent formula

N
Ecos[n ()= k)]~ 5 (-1 a4 2%t (21)
0% ™%

n=0 On

The numerical coefficients Ag,, follow from
the shape-dependent formulas

N
keotn (B)= 3 (D™ e pEM
0 ~ Om
m=0
1 2.2
kcotéo(k)— —§A+3—Xk , (22)

with Aq, (> 2)=Ag, (E a5 and Cg,, (m > 2)
= COm(Emax) for E<E, .. One finds a set
of linear relations between coefficients agy, and

Bon:
E on n

-m Om

4 2
-4 (r —HA 0
0n4( 6 ~BX"6 +4

.0 m n2)’ 0<m<N. (23)

=(-1)'p

This is similar to the standard distorted plane-
wave approximation (DPWA) form,® except for
the last bracketed term replacing -9,,5.

Given y, and €(, (1<% <N) and assuming (12) -
for Up(r), Eq. (23) gives N+ 1 simultaneous
equations linear in B,, (»=1-N), but nonlinear
in A,. To find v, and €(,, we expand in powers
of k2 the relation

k cotny(R) + Cyy

ST

o(kyy)vo(o; r)—uo(k,r)uo(O, /V)] d’}", (24)

obtaining relations for Cg, (1 <# <N) as func-
tions of y, and (linearly) of eg, (e=1---N). We
thus obtain y, and €(,, from the experimental
Con (1 <n <N) values.

Numerical calculations show that to fit C,
and C, in (11), we require A <1.1999-E, 0<E
<0.03. The value nearest to the figure C,
=-0.0297 of (11) is for A= 1.10, where C,(})
has a minimum at Cy,= 1.22. We take 1=1.10,
y=0.57166, and fit C,, by using €,, = —1.2344,
the latter €, value altering u,(r) from its €,
=0 values by only 2-5% in the interaction re-
gion v <6 F, say.

Solution of (23) with N=1 gives B,;=0.13703
F72, 2,=0.61544 F~! subject to errors of
several percent as in DPWA calculations.?
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FIG. 1. S-wave scattering potential (22x 10% cm™2)
as function of radius (F). U(#) is the total potential;
U, (v) the nuclear potential component, and Ug ¢ (%)
(not shown separately) the Pauli barrier.

We get

1.10»

V) =1.260~ 1107 ~1:1072

)

~0.13703¢ 0124 (o5
in units of F~2 (see Fig. 1). Thus Up (r) is a very
small attractive correction =3.4-MeV deep to the
Pauli barrier, with range [UIJ (r)= —Bl-e"z”/b]
b=3.25 F, consistent with an optical-well range
based on the nucleon radius »,=1.256 F.

Figure 2 shows the P,,, and P,,, potentials
found in earlier DPWA calculations,®?® approx-
imately 83 and 110 MeV deep, with ranges
2.18 and 2.34 F, respectively. The P-state
potentials have strengths consistent with an
optical-model potential, but the S-state nucle-
ar potential U, (») is only a few percent of the
strength of an optical well.

The result can be understood if we remem-
ber that this is an equivalent two-body problem,
involving two neutrons with quantum numbers
which would be identical but for one neutron
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FIG. 2. P-wave scattering potentials as functions of
radius. The Py, potential is compared with the initial
and iterated Py, solution potential. The difference be-
tween the Py, and Py , potentials is due to spin-orbit
effects (energy units are such that k%=1.0 F—2 corre-
sponds to 25.65 MeV in the c.m. system).

being in an /=0 state in the a@-particle c.m.
system, and the other in an L =0 state of the

n-a c.m. system. Two such free neutrons would
have a zero state probability lu,(»)12=0, but

we treat the « particle as a neutron “tethered”
to the a-particle c.m. This neutron has small

L >1 components in the n-a c.m. system, giv-
ing rise to the small residual optical-well in-
teraction U, (¥), and to the finite range of Ug . ().
But for the L >1 components, we would have
A=0andUg . ()= 6/72%, so that n,(k) =7, equiv-
alent to /=2 and 7,(k) =0, or no interaction in
the S state.
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