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Because of the exclusion principle, the phase/binding energy-equivalent n-o. potential

in the S state should have a repulsive core or Pauli barrier V(r 0) (h'2/2p)6/r2. A

distorted inverse-square barrier wave approximation is used to deduce from experimen-
tal phases an entirely repulsive, l =0 n-n potential.

Resonating group structure calculations, em-
ploying central nucleon-nucleon potentials'~'
and tensor forces, ~ ' predict n-n elastic scatter-
ing phases &I (k). These show &,(0) =&, &,(~)
= 0, with 'He unbound g, = 0).

A many-body Levinson theoreme predicts
mo redundant bound-state-type solutions to the
wave equation (me = number of "excluded" com-
posite bound states). If the potential (part cen-
tral, part nonlocal) satisfies

fc drr IU(r) Idr &~, j= 1., 2,
00 j

f"drr' 'f dr r IKo(r, r')1&~, j=1,2, (2)

then

~,(0)-~,( )=(n, +m, )~, ~,( )=0.

ly, at x=0, are'

Fo(k, r) = N(k) [-14k2+ X2-8 p2(r)] sinkr

+ 6k@(r) coskr],

Go(k, r) = N(k) [ JL4k'+ A—.
' —2 p. '(r)) coskr

-6k p(r) sinkr], (6)

where

N(k) = —,
'
[(4k + A. ) (k + A )]-'

-A.y' -A,y
p (r) = -X(1+e )/(1-e ).

We have

F,(k, r-0)=r', Fo(k, r-~)=sin(kr+ 5 ),

G, (k, r - 0)= 1/r', G, (k, r -~) = cos(kr+ 6,), (8)

the properties for ~= 0 being similar to D waves.
Also,

We require a two-body n-o. central potential
which is phase/binding energy-equivalent to the

above.
Condition (1) gives phases qo(k) satisfying

Levinson's theorem:

with

and

k cotbc(k) —= —C«+ Cod,

6,(0) = 0, 6,(~) = -m,

(9)

g, (0)-q, (~) =n, w, ri, (~) =0. (4)

2
C =-)., C =—,C (n~ 2)—:0.

00 3 ' 01 3~' On
(10)

Since n, = 0, one has rl, (0) = 0, requiring ri, (k)
= h, (k) —m; but since 11,(~) = —w, condition (1)
is broken, invalidating (4). Thus the potential
function U(r) = (2 p/5')V(r) has a repulsive core
or Pauli barrier Us c (r-0)-6/r' (exclusion-
principle effect). An intrinsic repulsive core
in the nucleon-nucleon potential may be absorbed
in cut-off factors.

One form of the Eckart potential possessing
this property is

(5)

its solutions, regular and irregular, respective-

For n-n 3=0 scattering, E & 8 MeV phase
analysis yields

Coo 0 3999 F

Coi= 0.6475 F, Co2= -0.02987 Fs

Fitting C«=0.3999 via (10) gives X=1.1997 F
implying Co&

= 0.5557, Co2—= 0—an approximate
fit to (11).

Note that an infinite square barrier (hard
core) of width b has

C«= 1/b, Co, = 3b, Cc2=b /45,

and fitting Coo=0.3999 leads to b = 2.5006 F,
with C„=0.8335, C„=0.3475—a much worse
fit than for the Pauli barrier.
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The distorted inverse-square barrier wave
approximation (DISBWA) method calculates
the departure of U(r) from Us c (r) via

U(r)=U (r)+U (r),s.c. p
N

(r)= —Q B exp( —A r) (12)

the shape-dependent formula
N

kcos[g (k)-5 (k)]= Q (-1) A k
n=o

The numerical coefficients AO„ follow from
the shape-dependent formulas

k coty (k)= Q (—1) C k

m=0

(21)

with &n
= A. I/n, say. The scattering wave func-

tion satisfies

u, (k, r —0) = r'

u, (k, r —~) =v, (k, r) = sin(kr+q, ),

so that

u, (k, r) = F,(k, r) cos(rl, -5,)

(13)

+g, (k, r)G, (k, r) sin(7I, —50), (14)

where g, (k, r) is a form factor with properties

1 2 2
k cot5 (k)—= ——A. +—k,0 3 3~

(22)

with AP„(n ~ 2) =AP„(Ema„) and Cpm(m ~ 2)
= Cpm(Emax) for E &Emax. One finds a set
of linear relations between coefficients e0„and
&0:

n
a A

O, n —m Omm=0
g, (k, r - 0) = r', g, (k, r —~) = l.

A suitable form is

(15)
4 2=(—1) P —4(X 5 -5A 5 +45 ), 0&n &N. (23)0 no ~ n2 '

-rN
g (k, r)=(l-e 0

) [1+e ' Q e (kr) ], (16)
Ov

where y, and e0~ are adjustable parameters.
On using (12), one finds the integral equation

for the phase difference gp 50..

sin(q —5 )= — f U—(r)F (k, r)u (k, r)dr (17).
Q Q k 0 p

By substitution of (14) in (17), we get the DISBWA
integral equation for Us c (r), valid for lq, (k)
—5,(k) 1&p (k»):

This is similar to the standard distorted plane-
wave approximation (DPWA) form, B except for
the last bracketed term replacing -5„0.

Given yo and ep„(l &n &N) and assuming (12)
for Up(r), Eq. (23) gives N+ 1 simultaneous
equations linear in B (n = 1-N), but nonlinear
in ~,. To find yo and e0„, we expand in powers
of k' the relation

k cotqo(k)+ Coo

= k'f [vo(k, r)vo(0, r) —uo(k, r)uo(0, r)]dr, (24)

tan(q, -5,) =Z„/(1-Z„), (18)

Z, = 'f"U-(-)F '(k, )d,
1Q k 0 p

f™U(r—)g (k, r)F (k, r)G (k,r)dr (19).
We write

K =N (k)g (—1) o. k
n=O

N
X =N (k) Q I3 k

where ap and Ppm involve weighted moment
integrals over Up(r) and are functions of yo

and eg (n = 1—N). Equation (18) reduces to

obtaining relations for Cp„(1 &n &N) as func-
tions of yo and (linearly) of ep„(n = 1 ~ N). We
thus obtain yo and e0„ from the experimental
Cpn (1 &n &N) values.

Numerical calculations show that to fit Cpa
and C» in (11), we require A &1.1999—E, 0 &E
&0.03. The value nearest to the figure C„
= —0.0297 of (11) is for A. = 1.10, where CO2(A)

has a minimum at C„=1.22. We take X= 1.10,
y=0. 57166, and fit CO2 by using co~= -1.2344,
the latter eo, value altering uo(r) from its eo,
=0 values by only 2-5% in the interaction re-
gion x&6 F, say.

Solution of (23) with N= 1 gives B,= 0.13703
F ', &, = 0.61544 F ', subject to errors of
several percent as in DPWA calculations.
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