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The 90° differential scattering cross section
for the 0'®-0"® elastic scattering seen by Siems-
sen et 5_1_.‘ shows striking regularities in the
energy region 17 to 35'MeV in the c.m. system.
The cross section shows the usual Coulomb
scattering form at lower energies, but in the
17- to 35-MeV region there are three very-
well-defined peaks, each with a width about
2 MeV. These peaks are spaced at about 4-5
MeV, with the peak spacing increasing slow-
ly with energy. The ratio of peak-to-valley
cross sections is about 10 to 1. The peak cross
sections are roughly equal and each peak is
broken into three smaller peaks which them-
selves are evenly spaced.

The existence of such a regular series of
features in the scattering of two complicated
nuclei behooves one to look for a simple explan-
ation. Since the energy region involved is not
far removed from the Coulomb barrier, the
effect of the barrier is expected to come into
any description of this process. Surmounting
this barrier forms the first step in the inter-
action process. At this point there are two
competing effects: the nuclear potential and
the Pauli principle. Although the nuclei are
within the range of each other’s nuclear well,
the net result of this elastic process is the
coherent scattering of 16 particles on 16 par-
ticles. This coherence is mirrored by the fact
that the entrance and the exit channels are iden-
tical, and it is caused by the Pauli principle
which overcomes the coherence-destroying
effects of the attractive internucleon potential.

With this idea in mind, the second step of
the interaction process is determined by a nu-
clear potential dominated by the Pauli princi-
ple. Such a potential could have, as a function
of internuclear distance 7, the form of a re-
pulsive core with an attractive well at a larger
radius (Fig. 1). There is an analogy between
this nuclear potential and the intermolecular
potential represented by the Lennard-Jones
model.? The effective potential is then the sum

of the Pauli-principle-dominated nuclear poten-
tial and a potential barrier which is a sum of
the Coulomb and the centrifugal barriers at
the nuclear surface.

The sum could have the form shown in Fig.
1 with a dip between the repulsive core and the
top of an effective barrier. The bottom of the
effective well can even be above zero energy.
The height of the well and the effective well
size are determined by the competition between
the effective barrier (which is, in principle,
a sum of the Coulomb and angular-momentum
barriers) and the Pauli-principle-dominated
nuclear field. One can see with such a picture
that virtual states of the system can occur for
system energies above the effective barrier
leading to resonant features in the cross sec-
tion. A similar phenomenon exists in the case
of molecular scattering when a similar poten-
tial configuration is formed with a Lennard-
Jones potential and the centrifugal barrier po-
tential.® A series of virtual scattering states
exists and phenomena associated with these
states would be found in the cross section. The
general features associated with such a mod-
el would be slowly varying functions of A and Z.

To apply these ideas for an initial orientation
to the phenomena seen in the (0'¢-0') elastic
scattering, one can make a one-dimensional
model of such a potential, calculate the trans-
mission coefficient and the cross section, and
investigate whether a reasonable choice of pa-
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FIG. 1. Effective potential well.
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FIG. 2. The schematic potential used in this model.
The abcissa and ordinates represent, respectively,
the range and depth of the potential.

rameters leads to a description of these phenom-
ena and gives, even in this very simple approx-
imation, the dependence of these phenomena

on energy and potential parameters.

The extreme one-dimensional potential cho-
sen was a square-well model (Fig. 2) with an
effective barrier V., barrier thickness ¢., and
a well depth (now positive energy) V,, with range
7. The transmission coefficient of such a
potential in the JWKB approximation® is

T =[1+4(462-1/4622 sin®(n—J /7)) 2,

where the penetrability is

1
0= EXp-ﬁ f Coulomb‘b cdx
range

and the phase integral,

J=2 fNuclearpwdx

range

b and py, are, respectively, the momenta in-
side the effective barrier and effective well
and are, respectively, [2u(E-V.)]"? and [21(E
-V,,)]¥2 in this simple model. Such a trans-

mission factor will give cross-section maxi-
ma (T =1) when
n—J/li=-2Nm or Jn =(2N+1)77.

The cross section ¢ in this simple model is
given by T/E. It is interesting that the condi-
tion for the “resonance” is exactly the same

as that for a bound state. An important feature
of the potential of Fig. 2 is that in comparison
with an attractive well without barriers, the
penetrability associated with this model is con-
siderably larger, giving large peak-to-valley
ratios.

The experimental data, at 90° in the c.m.
system, smoothed with a running five-point
mean over 1 MeV to average out the small peaks
and obtain the gross structure, is used to ob-
tain quantities of interest. Table I contains
experimentally determined peak energies, peak
spacings, widths, and peak-to-valley cross-
section ratios. Widths listed here are deter-
mined from the energies at which the cross
section falls to one-half of its maximum value.

It should be noted that there is a partially
buried peak at about 17.5 MeV and a pair of
small peaks at 32 and 35 MeV which have a
much smaller peak-to-valley ratio than the
others.

The parameters chosen for the square-well
model are

Vc=17'5 MeV,
t,=0.1F,

V =16.0 MeV,
w

v =1.24Y8=3 F,
w

Table I. Comparison between the observed features (expt) and the theory (calc). (Energy, width in MeV.)

Resonance Peak-to-valley Resonance Valley
energy ratio Valley energy half-width width
Expt Calc Expt Calc? Expt Cale Expt Cale Expt Cale

17.5 17.6 10 6

18.8 18.9 0.7 0.7
20.6 20.4 10 7.4 2.2 1.0

22.5 22.4 1.2 1.5
24.6 24.6 10 9.2 2.2 1.3

26.8 27.4 2.2 3
29.6 30.3 10 11.2 1.8 1.4

31.0 33.5

a1f ¢ is changed to 0.2, the computed peak-to-valley ratios increase by about 80%, whereas the resonance half-

width narrows only by about 10%.
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The height of effective barrier V., and the
width of the well 27, are consistent with the
estimate of the sum of centrifugal and Coulomb
barriers on the nuclear surface and nuclear
radius, respectively. Since the path of inte-
gration in 6 involves the width of the barrier
near its top, ¢, is expected to be small. The
depth of the well V,,, in the context of the mod-
el, reflects the magnitude of the Pauli-prin-
ciple-dominated nuclear potential relative to
the height of the effective barrier. It is this
difference that produces the cross-section max-
ima. Quantities calculated, using the above
choice of parameters, are found in Table L.

The interesting feature of this model is that
with the choice of two, so-far-arbitrary num-
bers V,, and ¢, and with reasonable choices
for two other parameters, one can reproduce
(see Table I) (i) the experimental locations of
a whole series of peaks, (ii) the valley loca-
tions, (iii) the peak widths, and (iv) the peak-
to-valley ratios. The model furthermore pre-
dicts that (i) at the valleys cross sections are
very small, and (ii) that the valley is flat as
observed and the width of the valley increases
with the energy, e.g., the valley between the
peaks at 29.6 and 24.6 should be larger than
the width of the previous valley. These features
agree with the experiment. In short, the the-
oretical excitation function reproduces the ex-
perimental curve up to 31 MeV. Beyond that
energy the theory does not predict further large
peaks, e.g., the next peak around 37 MeV should
only be half the size of the 20.6-MeV peak.
Thus in this schematic model the cross sec-
tion beyond 31 MeV essentially falls off slow-
ly as 1/E, which agrees with the experiment.

It has already been felt*”® that the analysis
of the elastic scattering data involving heavy
ions, e.g. (C'2,C') may require a shallow po-
tential.

The apparent success of this schematic mod-
el leads to the hypothesis that a model which
would give angular distributions and other fea-
tures can be concocted using a Lennard-Jones
potential with an appropriate Coulomb and cen-
trifugal barrier. The main point of the present
Letter is to indicate that such a sophisticated
treatment should incorporate a very shallow
potential, preferably of Lennard-Jones type
with a hard or soft core. These results also
encourage one to seek a deeper explanation
for the nature of V,, in terms of a theory of
either the Bethe-Goldstone or the resonating

group® type. Such a treatment would surely
lead to a strong velocity-dependent potential
arising from particle exchange (nucleons, al-
phas, etc.) between the two oxygen nuclei, very
much in the same way that one gets a strong
velocity-dependent interaction between two
alpha particles due to the nucleonic exchange'®
{or the repulsive core of the two nucleon poten-
tial arising from pion exchange''). This veloc-
ity-dependent potential can then be approximat-
ed with an energy-dependent repulsive core
followed at large radii by a shallow smooth
attractive potential.

The transmission maxima of Table I can be
assumed to couple to various impurities such
as small intrinsic vibrational states of each
0O (or other intrinsic states, such as multi-
particle-hole states). This coupling results
(i) in generating a fine structure on each peak
(for a linear coupling they should be uniform-
ly spaced in energy) and (ii) in broadening the
widths of each peak.!?

As a final point, the question of where to look
for other such phenomena can be examined with
this model. They should not appear in the light-
est nuclei since the Coulomb barrier is not

.high enough to create an effective well. For

heavy nuclei, the Coulomb barrier is expect-
ed to increase faster than the repulsive Pauli
exchange forces, giving rise to a deepening
well. This will result in cross-section maxi-
ma whose width and spacing increase with nu-
cleon number.
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ELASTIC ELECTRON SCATTERING FROM LEAD-208 AT 175 AND 250 MeV
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We have measured absolute cross sections for the elastic scattering of 175- and 250-
MeV electrons from lead-208, and have carried out a partial-wave analysis of the data
for a Fermi-type nuclear charge distribution described with two or three parameters.
A comparison with low energy electron and muonic x-ray results is given.

High values of the incident electron energy
or high values of the momentum transfer enable
fine details to be revealed in the description
of the static charge distribution of the nucleus.!
On the other hand, x rays from muonic atoms
lead to a precise measurement of the rms nu-
clear size.? It is interesting to know to what
extent the two experiments complement each
other in determining the nuclear charge distri-
bution. Lead-208 is a spherical doubly magic
nucleus and is specially useful for this investi-
gation. We have carried out an experiment with
150- and 250-MeV electrons which covers a
large field of momentum transfer. Experimen-
tal and computational procedures are similar
to those of Hofstadter et al. 3 The electron beam
was supplied by the Stanford Mark-III linear
accelerator. The target was an isotopically
enriched foil of lead-208. The over-all ener-
gy resolution was 0.2%. The lowest 2°*Pb lev-
el is at 2.60 MeV and is well resolved from
the elastic peak. .

The differential elastic-scattering cross-sec-
tion values have been measured in absolute units
by comparing the data with the scattering cross
sections from hydrogen contained in a compar-
ison polyethylene (CH,) target. The hydrogen
cross sections were taken from well-established
values at the same momentum-transfer condi-
tions of this experiment. These cross sections
have been corrected for finite aperture of the
spectrometer and for angular spread of the in-
cident electron beam.

In Tables I and II, we give the values of the
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Table I. Elastic electron scattering cross sections
on lead-208. Incident energy=175+1.0 MeV.

6 Cross section
(deg) (cm?/sT)

32 (1.883+0.088) x 1072
34 (1.081+0.056)x10~%
36 (6.371+0.300) x 10—
38 (3.909+0.180) x 10—
40 (2.615+0.105) X 10—
45 (1.169+0.039) x 10—
49 (6.471+0.233) x10—2
53 (3.566+0.157)x10—2
58 (1.443+0.076)x 102
64 (8.991+0.300)x 102
69 (1.347+0.106) x10—2
74 (6.254+0,220) x10~%0
80 (4.228+0.117) x 1030
86 (2.791+0.125) x 10730

cross sections for both experiments. Error
bars include the statistical error and the un-
certainties in energy (0.6 %) and in angle (0.1°).
The interpretation of the above results has
been carried out with the phase-shift method
of calculation of the scattering process. The
computational procedures are described else-
where.* An examination of the results has been
made by using systematically a Fermi shape
with two or three parameters:

o) =p L+ W, 2/ expllr—c) /2] 41},

where z =t/4.4. If W=0, the parameter ¢ cor-
responds to the 90-109% skin thickness.



