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It is shown that if a longitudinal wave is excited in a collision-free plasma and Landau-
damps away, and a second wave is excited and also damps away, then a third wave (i.e. ,
the echo) will spontaneously appear in the plasma.

It has long been recognized that electron plas-
ma waves can be damped, even in the absence
of collisions. ' Collisionless damping (Landau
damping) has been the subject of extensive the-
oretical treatments in recent years and is now

believed to play an important role in many re-
lated, but more complicated, oscillation and
instability phenomena. Only recently has Lan-
dau damping been demonstrated experimental-
ly. ' Landau's treatment shows that macroscop-
ic quantities such as the electric field and the
charge density are damped exponentially, but
the perturbations in the electron phase-space
distribution f(x, v, t) oscillate indefinitely. Since
the electron density is given by ne ——If(x, v, t)dv,
one may think of the damping as arising out
of the phase mixing of various parts of the dis-
tribution function. In this paper, we will show
how the direction of the phas e evolution of the
perturbed distribution function can be reversed
by the application of a second electric field.
This results in the subsequent reappearance
of a macroscopic field (i.e. , the echo), many
Landau-damping periods after the application
of the second pulse. The plasma echo is re-
lated to other known echo phenomena' in that
the decay of a macroscopic physical quantity
of the system, caused by phase mixing of rap-
idly oscillating microscopic elements in the
system, is reversed by reversing the direction
of phase evolution of the microscopic elements.

The basic mechanism behind the plasma echo
can easily be understood. When an electric
field of spatial dependence e-»P is excited
in a plasma and then Landau-damps away, it
modulates the distribution function leaving a
perturbation of the form' f, (v) exp[-ik, x+ ik,vt].
For large t, there is no electric field associ-
ated with this perturbation, since a velocity
integral over it will phase mix to 0. If after

a time & a wave of spatial dependence e~~2~ is
excited and then damps away, it will modulate
the unperturbed part of the distribution leaving
a first-order term of the form f, (v) exp[ik, x
-ik2v(t-7')], but it will also modulate the per-
turbation due to the first wave leaving a sec-
ond-order term of the form

f, (v)f, tv) exp[i(k, —k, )x+ik,vT i(k, k, )v—t]. —

The coefficient of v in this exponential will van-
ish when t = T[k,j(k,—k, )]; so at this time a ve-
locity integral over this term will not phase
mix to 0, and an electric field will reappear
in the plasma. If 7 is long compared with a
collisionless damping period and [k,/(k, —k, )]
is of order unity, then this third electric field
will appear long after the first two waves have
damped away (i.e. , it will be an echo).

This echo phenomenon can be rigorously de-
rived from the collisionless Boltzmann equa-
tion and Poisson's equation. For the sake of
simplicity, we limit the presentation to one
dimension and treat the ions as a uniform po-
sitive background charge. If we assume that
the electron distribution is initially spatially
homogeneous, f(x, v, t =0) =f,(v), and that the
two externally applied pulses are given by'

=4„cos(k x)5[(u t]ext k, 1. p

y4 cos(k x)5[(u (t-T)],
2

then the Fourier transform of the spatial de-
pendence and Laplace transform of the time
dependence of the Boltzmann equation and Pois-
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son's equation can be written as
e &f e ~dp' Bf

(p+ k )f (,p)= z—kq (p) -+—) 2
z(k q)y (p p ) -&(p ),

k '4 k 'e
k'y (p) =4zzne fdvf (v, p)+ '[g +g ]+ -2[g +g ]e

p I z
(2)

~~~~~ q k(p) and fk(v, p) are the transformed electric potential and distribution function, and the pri~e
on the sigma in Eq. (1) indicates that the p =0 term is being treated separately in the manner usual
for mode coupling calculations. ~

To solve Eqs. (1) and (2), we expand in terms of the applied potentials 4k and Q . The first-ord-'1
er (or linear) solution just describes a Landau-damped plasma wave following each pulse. ' The sec-
ond-order solution associated with wave number' k, =—k, -k, can be written as

e4 4 k k +~
(2)(t) 1 2

k, m 4k,

t zao+ g dp &00+ g dp zk
3 0

Bf

+g2zzz„, +g 2zzz ~(~,P)(P+zk,v)' av

,p(t-~),p'~

iv[kzv-ka(t-7 )]ee 4 C kkik ~~+~ sf
"'(t) =— ' ' dv

k, m 4ks' &v e( k„ikv)e(k„—ik,v)e(k„—ikv)

This integral does not phase mix to 0 when k~(t-~) = kzT [i e., when t = ~'-=v(k /k, )], and this results
in the echo. One recognizes the various dielectric functions in the denominator as resulting from
the effect of the self-consistent fields associated with first and second pulses and the echo. By set-
ting these dielectric functions equal to unity, one recovers the result for weakly interacting or free
streaming particles [an easy limit in which to check Eq. (4)].

When t (~', we can evaluate the integral in Eq. (4) by closing the contour in the upper half v plane. '
In this region of the v plane, we pick up poles from the Landau roots of ~( k»ik, v—) On th.e other
hand, when t & ~', we must close the contour in the lower half ~ plane and we pick up poles from the
Landau roots of e(ks, —ik~v) and e(k„—ik,v). However, we may neglect the latter compared with the
former, since our assumption that k, /k~ =1 implies that k2 = 2kB and that ly(k2) l » iy(k, ) l. Carrying
out the integrations for these two cases and using a Maxwellian of mean thermal energy T to eval-
uate the dielectric functions yields the following time-asymptotic solution (i.e. , lt-~ lap)1):

4 2

1 2 D

ept e-p7'
(3)e(k„p')e(-k„p —p')(p'+ik, v) e(k„p p')e(-k„p')(p' —zk,v) '

where e(k, p) =—I-u p'/k'Jdv(&f0/&v)[v p+/ik] ' is the Landau dielectric function' and the p and p' con-
tours are defined by requiring that 0(g'(g. To carry out the p and p' integrations, we use the Cauchy
residue method, closing the contours on the side which produces vanishingly small exponentials in
the numerator. If we assume that & is long compared with a collisionless damping period and that
the time between the second pulse and the echo is same order as ~ {i.e. , that ly(kz)~l, ly(k, )~l, ly(k, )~l
»1 and that [k,/k3] = 1j, then the residues at the poles arising from the roots of the dielectric con-
stants will all be exponentially small and we may neglect them. Picking up the poles at p'=ik, v and

p = -ik~v yields the result

—(k /k )y(k )e ' ' ' cos[(u(k )(k /k )(~' —t)+5]

[(k3-kl)/(k&+ kl)]'+ y(kl)')"'
p 3 1

y(k )e ' cos[(u(k )(t—7')+ 6']yk, t

((u '[(k —k )/(k +k )]'+y(k )'P"

for t «'

220



VOLUME 19, NUMBER 5 PHYSICAL REVIEW LETTERS 31 JULY 1967

Ck0) v

I

y'(kv) t
e

yik2)(t- r)

]A~
ypv.

===—

"3 y(k() —(v'-t )~ky

k)
t

a A h A A Ij „ I""v p )y ) ) I

y (kp) (t- v')~e
Ithhh. .
yypvv t

k3= k2-k(
k2

k -k2

FIG. 1. Approximate variation of the principal Four-
ier coefficients of the self-consistent field for the case
k3 ——k& =- 2k2. Upper line: response to the first pulse;
middle line: response to the second pulse; lower line:
echo.

where

tan5=y(k )(k —k )/(u (k +k )
p 3

tan5' =y(k )(k —k )/(u (k +k ).

It is interesting to note that the echo is not sym-
metric in that it grows up at the rate expIy(k, )k,/
k, (w'-t)] and damps away at the rate expiry(k, )
X (f-~')].

The results of both the first- and second-or-
der calculations are summarized in Fig. 1.
The exponentials written in this figure indicate
the general dependence of the envelopes of the
oscillating curves, which have actually been
drawn for the case where 0, = k, .

The above calculation was based on the col-
lisonless Boltzmann equation and is invalidat-
ed if collisions are strong enough to destroy
the phase information before the echo can appear.
Small angle Coulomb collisions are particular-
ly effective in this regard, since the Fokker-
Planck operator representing these collisions
enhances the collision rate by a factor (k87)'
= (tu &)' when operating on a perturbation of
the form elk~ . By working in a marginal range,
one might be able to use this effect as a tool
to measure the Coulomb collision rate, even
though the neutral collision rate is somewhat
higher.

We have considered several variations on
the above calculation. Although in this paper
we have discussed explicitly only second-or-
der echoes, higher order echoes are also pos-
sible. For example, a third-order echo is
produced when the velocity space perturbation
from the first pulse is modulated by a spatial
harmonic of the electric field from the second
pulse. The echo then occurs at t = ~2k, /(2k,
-k, ) or t = 2w when k, = k, . This result is more
closely related to echoes of other types' which
are also third order for small amplitudes.

It is possible also to have spatial echoes,
and these will probably be easier to observe
experimentally than the temporal echoes de-
scribed above. If an electric field of frequen-
cy ~, is continuously excited at one point in
a plasma and an electric field of frequency
~2&c, is continuously excited at a distance
l from this point, then a spatial echo of frequen-
cy ~2—cu, will appear at a distance l&u, /(&u, —v, )
from the point where the second field is excited.

Finally, although our discussion has been
entirely in terms of electron wave echoes, it
is clear that the above treatment can be extend-
ed in a straightforward manner to include ion
dynamics, and this leads to temporal as well
as spatial ion wave echoes.

An observation of plasma echoes would be
of fundamental interest, since it would exper-
imentally verify the reversible nature of colli-
sionless damping. The analogy with spin echoes'
strongly suggests the possible use of the ehco
technique as a means for studying collisional
relaxation phenoma in plasmas.
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owing to our inclusions of ~p in the arguments of the
delta functions.
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60f course, @y +y, 4p + y, and Cy +p all have. sec-
2 2

ond-order terms, but the~ e is no echo associated with

these terms.
The Bfo/Be term in Eq. (4) looks like it makes the in-

tegrand diverge for large imaginary v, but this term is
actually canceled by a similar term hidden in e(—k&,ik&v).
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Recent photoemission studies of noble and transition metals show a predominance of
"nondirect" electronic excitations and indicate an anomalous density-of-states peak below
the expected d-band. We attribute these observations to second-order (and higher) pro-
cesses involving secondary phonon- and electron-pair excitations.

Photoemission studies of the noble and tran-
sition metals by Spicer and collaborators' im-
ply, contrary to the expected selection rule
for photon absorption, that the dominant absorp-
tion mechanism involves electron excitations
that do not conserve wave vector k. In addition
to this "nondirect"' character of the excitation
process, an anomalous peak in t.he valence den-
sity of states is deduced to lie several volts
below observed d-band structure. The d-band
structure itself. appears to be;in good agreement
with theoretical computations. I't has been shown~

particularly for Cu and Ni, that. the photoemis-
sion results, including the anomalous peaks,
are in agreement with optical-reflectance da-
ta. X-ray emxssxon data on Nz have been inter-
preted by Phillips' to provide confirmation for
the photoemission results, but Cuthill, McAl-
ister, and %williams dispute this interpretation.
They associate the observed large x-ray emis-
sion peak with the d-band density of states,
while Phillips identifies this peak with the anom-
alous peak observed several electron volts
below the d-band structure in optical and pho-
toemission data, . Ion-neutralization spectra4
of Cu and Ni indicate prominent d-band densi-
ty-of-states peaks, with an anomalous peak in
Cu at the same energy a,s the anomalous opti-
cal peak, but, with no second. peak in Ni.

We shall not attempt to resolve the questions
raised by existing inconsistencies among exper-
imental data. However, we shall point out ad-
ditional evidence for the importance of nondi-
rect optical transitions in metals, and we pro-
pose a general mechanism for the appearance
of anomalous shifted peaks in effective densi-
ties of states deduced from optical data.

If optical experiments on metals really mea-
sure nonloeal bulk properties and not surface
effects, then k conservation must be assumed
for the over-a, ll absorption process. Observa-
tion of nondireet processes implies that second-
order (or higher) processes are involved, so
that nondirect. electronic excitations are cou-
pled to secondary exeitations that make up the
necessary k vector. If nondirect processes
are observed in any part of the spectrum, the
dipole sum rule implies that the observed in-
tensity is borrowed from first-order direct
electronic excitations. It follows from this that.

any nondireet process has the effect of decreas-
ing the relative intensity of direct. processes,
thus increasing the relative strength of other
nondirect transitions,

Any intrinsic absorption below the threshold
for direct excitation must be due to a nondirect
process. In particular, the well-known clas-
sical Drude theory of free electron absorption
corresponds in the quantum theory to a second-
order indirect process in which k is conserved
by phonon emission or absorption. The quan-
tum theory of such indirect processes has been
applied by Nettel' to describe not only the Drude
absorption but also the anomalous structure
observed in Na below the threshold for direct
one-electron excitation. Similar structure
observed in other alkali metals shows temper-
ature dependence that is not yet accounted for, '
but, as pointed out above, such structure must
be attributed to a nondirect excitation process
because it lies below the direct excitation thresh-
old. It has been shown by Ferrell' that an in-
direct electronic excitation from the Fermi
surface to the Brillouin zone boundary would


