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It is pointed out that the classical two-dimensional harmonic "solid" exhibits an infi-
nite generalized susceptibility at low temperature, although there is no long-range order
and no phase transition.

It has been rigorously proven that there is
no ferromagnetism in the two-dimensional iso-
tropic Heisenberg model. ' There are, however,
strong indications that the magnetic suscepti-
bility becomes infinite below some critical tem-
perature. ' It has therefore been speculated
that, below this critical temperature, the curve
of the magnetization versus the field might have
a vertical tangent at zero field, without having
a finite discontinuity.

In the present note, it is proven that a very
simple soluble model, the classical two-dimen-
sional harmonic "solid, "does exhibit this very
behavior. Let K be a vector of the reciprocal
lattice. The analog of the spontaneous magne-
tization per particle is N ' times the average
value (pK)0 of the Fourier component of the
density pK in the limit of no external field.
The analog of the susceptibility is the linear
response gK of (1/N)(pK) to the static external
potential Uexp(iK z). It is well known that a
harmonic system undergoes no phase transition,
in any number of dimensions, and also that
(I/N)(pK)0 is zero in one and two dimensions.
We shall prove, however, that in two dimensions,

gK, finite above a critical temperature T,
becomes infinite at and below that temperature.

We consider a two-dimensional square lattice
of N particles of mass m which interact through
harmonic forces; periodic boundary conditions
are assumed. Let R. be the equilibrium posi-

z
tions of the particles and u& the deviations of
these positions from their equilibrium values.
The u are linear combinations of the phonon
coordinates' v~..

u =N z~2+ exp(zk R.)v .
i k k

The potential energy of the system is ~~&uk'
x Ivk I', where uk is the angular frequency as-
sociated with the wave number k; and the sums
on k always run over the first Brillouin zone.
A co~potent v&& of v& has a Gaussian distri-
bution with a width given by the energy equipar-
tition at temperature T:

~k'(Izk„ I') = ,'k T. -

The total internal energy (including the kinet-
ic energy) is 2Nk&T. Since this is a regular
function of T, there is no phase transition in the
the thermodynamic sense.

The Fourier component of the density pK is
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defined as

p- =g exp[ —K.(R. +u.)]=+.exp( —iK u ). , (3)K Z
z'

and, since u& is a, linear combination of Gauss-
ianly distributed variables,

(1/N)(p-) =exp[-(2)(K u.)')]Ko ~ z'

From (1) and (2), one gets the following in the
limit of an infinite system'.

k TSC*

((K u.)') =
s 4~'m co

' (5)

(we take the equilibrium distance between near-
est neighbors as the unit of length). Since ~k
behaves like ck (c is the sound velocity) for
small k values, the integral in (5) diverges;
ui has infinite fluctuations, and (1/N)(pK)0 is
washed out to zero. The system has no long-
range order and is not a solid in the usual sense.

The generalized susceptibility is defined by
applying an external potential V exp(iK r) and

looking at the response of (1/N)(pK):

~- = (1/N)(s(pK)/81)

lowing: The k sum in (8) may be split into two

regions. For k & 1/Rl&, 1-cos(k Rl&) is small,
and this region does not contribute much to the
sum; for k&1/Rl&, cos(k Rl&)/~k' is an oscil-
lating function, the sum of which is also small.
The main contribution therefore is

1 1 1 dk
2 4 2 2 2nk—

k»/Rl. k 1/Rl.1j 1j

The argument can be made rigorous through
the introduction of upper and lower bounds for
the functions which are involved, and then leads
to the inequality, valid for all R1 c 0„

J([K ~ (u -u. )] )—(k TK /wmc ) lnR . [&AT,
1 j B 1j

where A is a constant, independent of R1j, N,
and T. R1j however must be understood as
the shortest distance between the lattice points
1 and j when the periodic boundary conditions
are taken into account, i.e., the shortest path
on the torus on which the lattice may be wrapped.

Going back to the susceptibility (7), one sees
that

(1/Nk—T)(lp- I )0, (8)

where the last equality follows from the rela, —

tion4 between the linear response and the flue
tuations at zero field. Therefore,

(1/Nk T)Q(—exp[iK ~ (u.-u.)])K B Z

= —(1/k T)Q exp(- (-', )([K (u -u.)]')].B . 1 j (7)

From (1) and (2), one gets

2k Tz'
([K (u -u.)]')=

j mN

1—cos[k ~ (R —R.)]
. (8)

For a given value of Rl —R&, (8) remains finite
as N-: Although u, and uj each have infinite
fluctuations, they are correlated in such a way
that their difference has only finite fluctuations.
Incidentally, this shows that the usual assump-
tion of harmonic forces between neighboring
particles remains a consistent one, since the
local deformations of the lattice are finite.
When, however, Rl = )Rl-R f increases, (8)
behaves like a cons ant times 1nR1&.

A crude argument for this result is the fol-

where exp( —~T) & B & exp-,'AT and

T = 4am c'/K'.
C

(12)

—1- C(T T)-
c

where C is some constant. .
The same dependence R . T/Tc that we1j

find for our

exp( ——,
'
([K ~ (u —u .)]'))1 j

In the limit of an infinite system, ' the j sum
in (11), which runs over the two-dimentional
lattice, will converge at infinity if T& Tc, but
will diverge as soon as T ~Tc.

For temperatures just above T, the suscep-
tibility behaves like

X---(B/k T)5 2vRdRR
00 2T/T-

K
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has been suggested for the correlation func-
tion (gi 0 ) in the Heisenberg model. Our sus-
ceptibility, however, diverges with a (T-T )
law which differs from the nonentire power
law proposed' for the Heisenberg model.

It may be worth emphasizing again that, in
the present model, Tc is not a thermodynam-
ical singularity; moreover, T depends on that
wave number K Which has been considered.

It is possible that the above considerations
might serve as a guide for obtaining further
results on the two-dimensional Heisenberg mod-
el, and perhaps on the hard-disc system.

*Laboratoire associe au Gentre National de la Re-
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Recently, Hattori et al. have measured the
structure factors of Si single crystals on the
absolute scale with an accuracy of about 1%.'~'

The method is entirely different from the con-
ventional one based on x-ray intensity measure-
ments. The new method is based on the spac-
ing measurement of the Pendellosung fringes
due to the interference of doubly refracted x
rays under the condition of the Bragg reflec-
tion. The results are free from extinction ef-
fects and less ambiguous in applying the the-
oretical formula connecting the structure fac-
tor 1Fg I with the observable quantities.

The spacing A&c of the Pendellosung fringes
along the net plane is given by»~

C 7T'U Al C

g A. cosy e' gB

A =A 4 (2)

including the effect of x-ray polarization, where
A is the wavelength, 9B is the Bragg angle,
v is the volume of unit cell, and e, m, and c
are the physical constants having usual mean-
ings. The observable spacing Ag is connect-
ed with this spacing A&c through a geometri-
cal factor 4&'.

If a perfect wedge crystal of wedge angle p
is used and either the entrance surface or the
exit surface of the crystal is perpendicular
to the plane determined by the incident beam
and the Bragg-reflected beam, the factor 4&
turns out to be cot@.

We confirmed through internal check that
A& itself could be determined with an accura-
cy of about 0.1% under suitable experimental
conditions, particularly in low-order reflec-
tions. A difficulty, however, for obtaining
IF I accurately arises in determining the wedge
angle p with sufficient accuracy. Moreover,
it is rather difficult to prepare an ideally per-
fect wedge of the crystal. For this reason,
in the previous work, the accuracy of the struc-
ture factor was not better than about 1%.

Here, it is shown that the geometrical fac-
tor 4& can be eliminated by combining the ex-
periment of Pendellosung fringes with that of
thickness fringes in x-ray interferometry which
has been recently demonstrated by Bonse and
Hart. ' The principle of the present interfer-
ometer is illustrated in Fig. 1. The incident
beam satisfies the Bragg condition simultaneous-
ly at the interferometer crystals 8, N, and
A. Contrary to that of Bonse and Hart, an ex-
tremely narrow beam (20-100 p) was used


